Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano-Ruiz, Julio C. | es_ES |
dc.contributor.author | Mula, Josefa | es_ES |
dc.contributor.author | Poler, R. | es_ES |
dc.date.accessioned | 2023-10-03T18:01:49Z | |
dc.date.available | 2023-10-03T18:01:49Z | |
dc.date.issued | 2022-03 | es_ES |
dc.identifier.issn | 0278-6125 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197517 | |
dc.description.abstract | [EN] Based on a scientific literature review in the conceptual domain defined by smart manufacturing scheduling (SMS), this article identifies the benefits and limitations of the reviewed contributions, establishes and discusses a set of criteria with which to collect and structure its main synergistic attributes, and devises a conceptual framework that models SMS around three axes: a semantic ontology context, a hierarchical agent structure, and the deep reinforcement learning (DRL) method. The main purpose of such a modelling research is to establish a conceptual and structured relationship framework to improve the efficiency of the job shop scheduling process using the approach defined by SMS. The presented model orients the job shop scheduling process towards greater flexibility, through enhanced rescheduling capability, and towards autonomous operation, mainly supported by the use of machine learning technology. To the best of our knowledge, there are no other similar conceptual models in the literature that synergistically combine the potential of the specific set of Industry 4.0 principles and technologies that model SMS. This research can provide guidance for practitioners and researchers¿ efforts to move toward the digital transformation of job shops. | es_ES |
dc.description.sponsorship | The research leading to these results received funding from the European Union H2020 Programme ,Belgium with grant agreements No. 825631 "Zero-Defect Manufacturing Platform (ZDMP) ", No. 958205 "Industrial Data Services for Quality Control in Smart Manufacturing (i4Q) " and 872548 "Fostering DIHs for Embedding Interoperability in Cyber-Physical Systems of European SMEs (DIH4CPS) ", from Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and the Regional Department of Innovation, Universities, Science and Digital Society of the Generalitat Valenciana entitled "Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) (Ref. PROMETEO/2021/065). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Manufacturing Systems | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Industry 4.0 | es_ES |
dc.subject | Job shop | es_ES |
dc.subject | Smart manufacturing scheduling | es_ES |
dc.subject | Digital twin | es_ES |
dc.subject | Zero-defect manufacturing | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the Industry 4.0 perspective | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jmsy.2022.03.011 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTI2018-101344-B-I00//OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825631/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIUCSD//Ref. PROMETEO%2F2021%2F065//"Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/872548/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/958205/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Serrano-Ruiz, JC.; Mula, J.; Poler, R. (2022). Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the Industry 4.0 perspective. Journal of Manufacturing Systems. 63:185-202. https://doi.org/10.1016/j.jmsy.2022.03.011 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmsy.2022.03.011 | es_ES |
dc.description.upvformatpinicio | 185 | es_ES |
dc.description.upvformatpfin | 202 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 63 | es_ES |
dc.relation.pasarela | S\461190 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
upv.costeAPC | 3702,6 | es_ES |