Mostrar el registro completo del ítem
Castelló, A.; SERGIO BARRACHINA; Dolz Zaragozá, MF.; Enrique S. Quintana-Ortí; San Juan-Sebastian, P.; Tomás Domínguez, AE. (2022). High performance and energy efficient inference for deep learning on multicore ARM processors using general optimization techniques and BLIS. Journal of Systems Architecture. 125:1-9. https://doi.org/10.1016/j.sysarc.2022.102459
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197569
Título: | High performance and energy efficient inference for deep learning on multicore ARM processors using general optimization techniques and BLIS | |
Autor: | SERGIO BARRACHINA DOLZ ZARAGOZÁ, MANUEL FRANCISCO | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] We evolve PyDTNN, a framework for distributed parallel training of Deep Neural Networks (DNNs), into an efficient inference tool for convolutional neural networks. Our optimization process on multicore ARM processors ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.sysarc.2022.102459 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This research was partially sponsored by projects TIN2017-82972-R of Ministerio de Ciencia, Innovacion y Universidades, Spain and Prometeo/2019/109 of the Generalitat Valenciana, Spain. Adrian Castello was supported by the ...[+]
|
|
Tipo: |
|