- -

End-systole and end-diastole detection in short axis cine MRI using a fully convolutional neural network with dilated convolutions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

End-systole and end-diastole detection in short axis cine MRI using a fully convolutional neural network with dilated convolutions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Pelegrí, Manuel es_ES
dc.contributor.author Monmeneu, José V. es_ES
dc.contributor.author López-Lereu, María P. es_ES
dc.contributor.author Maceira, Alicia M. es_ES
dc.contributor.author Bodi, Vicente es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2023-10-04T18:01:55Z
dc.date.available 2023-10-04T18:01:55Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 0895-6111 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197574
dc.description.abstract [EN] The correct assessment and characterization of heart anatomy and functionality is usually done through inspection of magnetic resonance image cine sequences. In the clinical setting it is especially important to determine the state of the left ventricle. This requires the measurement of its volume in the end-diastolic and end-systolic frames within the sequence trough segmentation methods. However, the first step required for this analysis before any segmentation is the detection of the end-systolic and end-diastolic frames within the image acquisition. In this work we present a fully convolutional neural network that makes use of dilated convolutions to encode and process the temporal information of the sequences in contrast to the more widespread use of recurrent networks that are usually employed for problems involving temporal information. We trained the network in two different settings employing different loss functions to train the network: the classical weighted cross-entropy, and the weighted Dice loss. We had access to a database comprising a total of 397 cases. Out of this dataset we used 98 cases as test set to validate our network performance. The final classification on the test set yielded a mean frame distance of 0 for the end-diastolic frame (i.e.: the selected frame was the correct one in all images of the test set) and 1.242 (relative frame distance of 0.036) for the end-systolic frame employing the optimum setting, which involved training the neural network with the Dice loss. Our neural network is capable of classifying each frame and enables the detection of the end-systolic and end-diastolic frames in short axis cine MRI sequences with high accuracy. es_ES
dc.description.sponsorship Funding sources This work was partially supported by the Conselleria d'Innovació, Universitats, Ciència i Societat Digital, Generalitat Valenciana (grants AEST/2020/029 and AEST/2021/050) . es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computerized Medical Imaging and Graphics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cardiac magnetic resonance es_ES
dc.subject Deep learning es_ES
dc.subject Left ventricle es_ES
dc.subject Dilated convolutions es_ES
dc.subject Frame classification es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title End-systole and end-diastole detection in short axis cine MRI using a fully convolutional neural network with dilated convolutions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compmedimag.2022.102085 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2020%2F029//Aplicación de técnicas de deep learning (aprendizaje profundo) para un análisis automático de imágenes de Resonancia Magnética cardiaca/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2021%2F050//ESTABLECIMIENTO DE UN BIOMARCADOR PREDICTOR DEL RIESGO DE.../ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Pérez-Pelegrí, M.; Monmeneu, JV.; López-Lereu, MP.; Maceira, AM.; Bodi, V.; Moratal, D. (2022). End-systole and end-diastole detection in short axis cine MRI using a fully convolutional neural network with dilated convolutions. Computerized Medical Imaging and Graphics. 99:1-8. https://doi.org/10.1016/j.compmedimag.2022.102085 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compmedimag.2022.102085 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 99 es_ES
dc.identifier.pmid 35689982 es_ES
dc.relation.pasarela S\470300 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem