- -

Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author BRAVO SELLES, MILAGROS es_ES
dc.contributor.author Jones, Dylan es_ES
dc.contributor.author Pla Santamaría, David es_ES
dc.contributor.author Salas-Molina, Francisco es_ES
dc.date.accessioned 2023-10-05T18:01:24Z
dc.date.available 2023-10-05T18:01:24Z
dc.date.issued 2022-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197763
dc.description.abstract [EN] Random events make multiobjective programming solutions vulnerable to changes in input data. In many cases statistically quantifiable information on variability of relevant parameters may not be available for decision making. This situation gives rise to the problem of obtaining solutions based on subjective beliefs and a priori risk aversion to random changes. To solve this problem, we propose to replace the traditional weighted goal programming achievement function with a new function that considers the decision maker's perception of the randomness associated with implementing the solution through the use of a penalty term. This new function also implements the level of a priori risk aversion based around the decision maker's beliefs and perceptions. The proposed new formulation is illustrated by means of a variant of the mean absolute deviation portfolio selection model. As a result, difficulties imposed by the absence of statistical information about random events can be encompassed by a modification of the achievement function to pragmatically consider subjective beliefs. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. s This work is devoted to the memory of Professor Enrique Ballestero for his selfess dedication to it. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Operational Research (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Goal programming es_ES
dc.subject Uncertainty es_ES
dc.subject Beliefs es_ES
dc.subject Risk aversion es_ES
dc.subject Power utility es_ES
dc.subject Portfolio selection es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.title Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12351-022-00713-1 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Bravo Selles, M.; Jones, D.; Pla Santamaría, D.; Salas-Molina, F. (2022). Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection. Operational Research (Online). 22(5):5685-5706. https://doi.org/10.1007/s12351-022-00713-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12351-022-00713-1 es_ES
dc.description.upvformatpinicio 5685 es_ES
dc.description.upvformatpfin 5706 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1866-1505 es_ES
dc.relation.pasarela S\465519 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Abdelaziz FB, Aouni B, El Fayedh R (2007) Multi-objective stochastic programming for portfolio selection. Eur J Oper Res 177(3):1811–1823 es_ES
dc.description.references Abdelaziz FB, El Fayedh R, Rao A (2009) A discrete stochastic goal program for portfolio selection: the case of united arab emirates equity market. INFOR Inf Syst Op Res 47(1):5–13 es_ES
dc.description.references Aouni B, La Torre D (2010) A generalized stochastic goal programming model. Appl Math Comput 215(12):4347–4357 es_ES
dc.description.references Aouni B, Ben Abdelaziz F, La Torre D (2012) The stochastic goal programming model: theory and applications. J Multi-Criteria Decis Anal 19(5–6):185–200 es_ES
dc.description.references Arrow KJ (1965) Aspects of the theory of risk-bearing. Academic Bookstore, Helsinki es_ES
dc.description.references Ballestero E (1997) Utility functions: a compromise programming approach to specification and optimization. J Multi-Criteria Decis Anal 6(1):11–16 es_ES
dc.description.references Ballestero E (2001) Stochastic goal programming: a mean-variance approach. Eur J Op Res 131(3):476–481 es_ES
dc.description.references Ballestero E, Pla-Santamaria D (2004) Selecting portfolios for mutual funds. Omega 32(5):385–394 es_ES
dc.description.references Ballestero E, Romero C (1998) Multiple criteria decision making and its applications to economic problems. Kluwer Academic Publishers, Dordrecht es_ES
dc.description.references Ballestero E, Bravo M, Pérez-Gladish B, Arenas-Parra M, Pla-Santamaria D (2012) Socially responsible investment: a multicriteria approach to portfolio selection combining ethical and financial objectives. Eur J Op Res 216(2):487–494 es_ES
dc.description.references Bhamra HS, Uppal R (2006) The role of risk aversion and intertemporal substitution in dynamic consumption-portfolio choice with recursive utility. J Econ Dyn Control 30(6):967–991 es_ES
dc.description.references Bilbao-Terol A, Jiménez M, Arenas-Parra M (2016) A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning. Ann Op Res 245(1–2):137–162 es_ES
dc.description.references Branke J, Deb K, Miettinen K, Slowiński R (2008) Multiobjective optimization: interactive and evolutionary approaches. Springer Science & Business Media, Berlin es_ES
dc.description.references Bravo M, Gonzalez I (2009) Applying stochastic goal programming: a case study on water use planning. Eur J Op Res 196(3):1123–1129 es_ES
dc.description.references Charnes A, Collomb B (1972) Optimal economic stabilization policy: linear goal-programming models. Soc-Econ Plan Sci 6:431–435 es_ES
dc.description.references Charnes A, Cooper WW (1957) Management models and industrial applications of linear programming. Manag Sci 4(1):38–91 es_ES
dc.description.references Charnes A, Cooper WW, Ferguson RO (1955) Optimal estimation of executive compensation by linear programming. Manag Sci 1(2):138–151 es_ES
dc.description.references Cheridito P, Summer C (2006) Utility maximization under increasing risk aversion in one-period models. Finance Stoch 10(1):147–158 es_ES
dc.description.references Choobineh M, Mohagheghi S (2016) A multi-objective optimization framework for energy and asset management in an industrial microgrid. J Clean Prod 139:1326–1338 es_ES
dc.description.references Debreu G (1960) Topological methods in cardinal utility theory. In: Mathematical Methods in the Social Sciences. Standford University Press, Standford es_ES
dc.description.references Díaz-Madroñero M, Mula J, Jiménez M (2014) Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. Int J Prod Res 52(23):6971–6988 es_ES
dc.description.references Elbasha EH (2005) Risk aversion and uncertainty in cost-effectiveness analysis: the expected-utility, moment-generating function approach. Health Econ 14(5):457–470 es_ES
dc.description.references Ewald CO, Yang Z (2008) Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk. Math Methods Op Res 68(1):97–123 es_ES
dc.description.references Gass SI (1986) A process for determining priorities and weights for large-scale linear goal programmes. J Op Res Soc 37(8):779–785 es_ES
dc.description.references Ghahtarani A, Najafi AA (2013) Robust goal programming for multi-objective portfolio selection problem. Econ Model 33:588–592 es_ES
dc.description.references Gollier C (2001) The economics of risk and time. MIT press, Cambridge es_ES
dc.description.references González-Pachón J, Romero C (2016) Bentham, Marx and Rawls ethical principles: in search for a compromise. Omega 62:47–51 es_ES
dc.description.references González-Pachón J, Diaz-Balteiro L, Romero C (2019) A multi-criteria approach for assigning weights in voting systems. Soft Comput 23(17):8181–8186 es_ES
dc.description.references Grigoroudis E, Orfanoudaki E, Zopounidis C (2012) Strategic performance measurement in a healthcare organisation: a multiple criteria approach based on balanced scorecard. Omega 40(1):104–119 es_ES
dc.description.references Hanks RW, Weir JD, Lunday BJ (2017) Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets. Eur J Op Res 262(2):636–646 es_ES
dc.description.references Ignizio JP (1999) Illusions of optimality. Eng Optim 31(6):749–761 es_ES
dc.description.references Jiménez M, Bilbao-Terol A, Arenas-Parra M (2018) A model for solving incompatible fuzzy goal programming: an application to portfolio selection. Int Trans Op Res 25(3):887–912 es_ES
dc.description.references Johansson-Stenman O (2010) Risk aversion and expected utility of consumption over time. Games Econ Behav 68(1):208–219 es_ES
dc.description.references Jones D (2011) A practical weight sensitivity algorithm for goal and multiple objective programming. Eur J Op Res 213(1):238–245 es_ES
dc.description.references Jones D, Tamiz M (2010) Practical goal programming. Springer, New York es_ES
dc.description.references Kallberg JG, Ziemba WT (1983) Comparison of alternative utility functions in portfolio selection problems. Manag Sci 29(11):1257–1276 es_ES
dc.description.references Kihlstrom R (2009) Risk aversion and the elasticity of substitution in general dynamic portfolio theory: consistent planning by forward looking, expected utility maximizing investors. J Math Econ 45(9–10):634–663 es_ES
dc.description.references Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, Kelley K, Hamrick JB, Grout J, Corlay S, et al (2016) Jupyter notebooks-a publishing format for reproducible computational workflows. In: ELPUB, pp. 87–90 es_ES
dc.description.references Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market. Manag Sci 37(5):519–531 es_ES
dc.description.references Kraft D (1988) A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt 28 es_ES
dc.description.references Krantz D, Luce D, Suppes P, Tversky A (1971) Foundations of measurement: geometrical, threshold, and probabilistic representations. Academic Press, New York es_ES
dc.description.references Kuchta D (2004) Robust goal programming. Control Cybern 33(3):501–510 es_ES
dc.description.references Langlais E (2005) Willingness to pay for risk reduction and risk aversion without the expected utility assumption. Theory Decis 59(1):43–50 es_ES
dc.description.references Markowitz H (1952) Portfolio selection. J Financ 7(1):77–91 es_ES
dc.description.references Masri H (2017) A multiple stochastic goal programming approach for the agent portfolio selection problem. Ann Op Res 251(1–2):179–192 es_ES
dc.description.references Matthews LR, Guzman YA, Floudas CA (2018) Generalized robust counterparts for constraints with bounded and unbounded uncertain parameters. Comput Chem Eng 116:451–467 es_ES
dc.description.references McCarl BA, Bessler DA (1989) Estimating an upper bound on the pratt risk a version coefficient when the utility function is unknown. Aust J Agric Econ 33:56 es_ES
dc.description.references Messaoudi L, Aouni B, Rebai A (2017) Fuzzy chance-constrained goal programming model for multi-attribute financial portfolio selection. Ann Op Res 251(1–2):193–204 es_ES
dc.description.references Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multiobjective optimization: interactive approaches. In: Multiobjective Optimization. Springer, Berlin, pp 27–57 es_ES
dc.description.references Muñoz MM, Ruiz F (2009) ISTMO: an interval reference point-based method for stochastic multiobjective programming problems. Eur J Op Res 197(1):25–35 es_ES
dc.description.references Muñoz MM, Luque M, Ruiz F (2010) Interest: a reference-point-based interactive procedure for stochastic multiobjective programming problems. OR Spectr 32(1):195–210 es_ES
dc.description.references Oliveira R, Zanella A, Camanho AS (2019) The assessment of corporate social responsibility: the construction of an industry ranking and identification of potential for improvement. Eur J Op Res 278(2):498–513 es_ES
dc.description.references Pratt JW (1964) Risk aversion in the small and in the large. Econometrica 32(1–2):122–136 es_ES
dc.description.references Romero C (1991) Handbook of critical issues in goal programming. Pergamon Press, Oxford es_ES
dc.description.references Salas-Molina F, Rodríguez-Aguilar JA, Pla-Santamaria D (2018) Boundless multiobjective models for cash management. Eng Econ 63(4):363–381 es_ES
dc.description.references Schechter L (2007) Risk aversion and expected-utility theory: a calibration exercise. J Risk Uncertain 35(1):67–76 es_ES
dc.description.references Tamiz M, Jones D (1996) Goal programming and pareto efficiency. J Inf Optim Sci 17(2):291–307 es_ES
dc.description.references Tsionas MG (2019) Multi-objective optimization using statistical models. Eur J Op Res 276(1):364–378 es_ES
dc.description.references Woerheide W, Persson D (1993) An index of portfolio diversification. Financ Serv Rev 2(2):73–85 es_ES
dc.description.references Xu Y, Yeh CH (2012) An integrated approach to evaluation and planning of best practices. Omega 40(1):65–78 es_ES
dc.description.references Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 16.- Promover sociedades pacíficas e inclusivas para el desarrollo sostenible, facilitar acceso a la justicia para todos y crear instituciones eficaces, responsables e inclusivas a todos los niveles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem