- -

Low-complexity soft ML detection for generalized spatial modulation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-complexity soft ML detection for generalized spatial modulation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Simarro, M. Angeles es_ES
dc.contributor.author García Mollá, Víctor Manuel es_ES
dc.contributor.author Martínez Zaldívar, Francisco José es_ES
dc.contributor.author Gonzalez, Alberto es_ES
dc.date.accessioned 2023-10-05T18:01:27Z
dc.date.available 2023-10-05T18:01:27Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 0165-1684 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197765
dc.description.abstract [EN] Generalized Spatial Modulation (GSM) is a recent Multiple-Input Multiple-Output (MIMO) scheme, which achieves high spectral and energy efficiencies. Specifically, soft-output detectors have a key role in achiev-ing the highest coding gain when an error-correcting code (ECC) is used. Nowadays, soft-output Maxi-mum Likelihood (ML) detection in MIMO-GSM systems leads to a computational complexity that is un-feasible for real applications; however, it is important to develop low-complexity decoding algorithms that provide a reasonable computational simulation time in order to make a performance benchmark available in MIMO-GSM systems. This paper presents three algorithms that achieve ML performance. In the first algorithm, different strategies are implemented, such as a preprocessing sorting step in order to avoid an exhaustive search. In addition, clipping of the extrinsic log-likelihood ratios (LLRs) can be incor-porating to this algorithm to give a lower cost version. The other two proposed algorithms can only be used with clipping and the results show a significant saving in computational cost. Furthermore clipping allows a wide-trade-off between performance and complexity by only adjusting the clipping parameter. es_ES
dc.description.sponsorship Acknowledgements This work has been partially supported by Spanish Ministry of Science, Innovation and Universities and by European Union through grant RTI2018-098085-BC41 (MCUI/AEI/FEDER) , by GVA es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Signal Processing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Generalized spatial modulation (GSM) es_ES
dc.subject Multiple-Input multiple-Output (MIMO) es_ES
dc.subject Low-complexity es_ES
dc.subject Soft-output es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Low-complexity soft ML detection for generalized spatial modulation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.sigpro.2022.108509 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//IDIFEDER%2F2020%2F050//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//RED2018-102668-T/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Simarro, MA.; García Mollá, VM.; Martínez Zaldívar, FJ.; Gonzalez, A. (2022). Low-complexity soft ML detection for generalized spatial modulation. Signal Processing. 196:1-12. https://doi.org/10.1016/j.sigpro.2022.108509 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.sigpro.2022.108509 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 196 es_ES
dc.relation.pasarela S\456438 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem