Mostrar el registro sencillo del ítem
dc.contributor.author | Simarro, M. Angeles | es_ES |
dc.contributor.author | García Mollá, Víctor Manuel | es_ES |
dc.contributor.author | Martínez Zaldívar, Francisco José | es_ES |
dc.contributor.author | Gonzalez, Alberto | es_ES |
dc.date.accessioned | 2023-10-05T18:01:27Z | |
dc.date.available | 2023-10-05T18:01:27Z | |
dc.date.issued | 2022-07 | es_ES |
dc.identifier.issn | 0165-1684 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197765 | |
dc.description.abstract | [EN] Generalized Spatial Modulation (GSM) is a recent Multiple-Input Multiple-Output (MIMO) scheme, which achieves high spectral and energy efficiencies. Specifically, soft-output detectors have a key role in achiev-ing the highest coding gain when an error-correcting code (ECC) is used. Nowadays, soft-output Maxi-mum Likelihood (ML) detection in MIMO-GSM systems leads to a computational complexity that is un-feasible for real applications; however, it is important to develop low-complexity decoding algorithms that provide a reasonable computational simulation time in order to make a performance benchmark available in MIMO-GSM systems. This paper presents three algorithms that achieve ML performance. In the first algorithm, different strategies are implemented, such as a preprocessing sorting step in order to avoid an exhaustive search. In addition, clipping of the extrinsic log-likelihood ratios (LLRs) can be incor-porating to this algorithm to give a lower cost version. The other two proposed algorithms can only be used with clipping and the results show a significant saving in computational cost. Furthermore clipping allows a wide-trade-off between performance and complexity by only adjusting the clipping parameter. | es_ES |
dc.description.sponsorship | Acknowledgements This work has been partially supported by Spanish Ministry of Science, Innovation and Universities and by European Union through grant RTI2018-098085-BC41 (MCUI/AEI/FEDER) , by GVA | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Signal Processing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Generalized spatial modulation (GSM) | es_ES |
dc.subject | Multiple-Input multiple-Output (MIMO) | es_ES |
dc.subject | Low-complexity | es_ES |
dc.subject | Soft-output | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | INGENIERÍA TELEMÁTICA | es_ES |
dc.title | Low-complexity soft ML detection for generalized spatial modulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.sigpro.2022.108509 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//IDIFEDER%2F2020%2F050//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//RED2018-102668-T/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Simarro, MA.; García Mollá, VM.; Martínez Zaldívar, FJ.; Gonzalez, A. (2022). Low-complexity soft ML detection for generalized spatial modulation. Signal Processing. 196:1-12. https://doi.org/10.1016/j.sigpro.2022.108509 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.sigpro.2022.108509 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 196 | es_ES |
dc.relation.pasarela | S\456438 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |