- -

Improving Stability and Performance of Cesium Mixed Lead Halides for Photovoltaic Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving Stability and Performance of Cesium Mixed Lead Halides for Photovoltaic Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Doumbia, Youssouf es_ES
dc.contributor.author Bouich, Amal es_ES
dc.contributor.author Soro, Donafologo es_ES
dc.contributor.author Marí, B. es_ES
dc.date.accessioned 2023-10-05T18:01:37Z
dc.date.available 2023-10-05T18:01:37Z
dc.date.issued 2023-03 es_ES
dc.identifier.issn 1047-4838 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197769
dc.description.abstract [EN] We have focused on mixed halide perovskite thin films of the formula CsPbX3 where (X-3 = Br-3, Cl-3, I-3, Br2Cl, Br2I, and I2Cl) prepared by spin-coating in order to study the effects of partial and total Br substitution. For this purpose, we performed a series of characterizations, including x-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-visible spectroscopy. All the films except CsPbI2Br showed two characteristic peaks at 2 theta angles of 26.80 degrees and 51.80 degrees corresponding to the (111) and (220) crystallographic planes. In the case of CsPbI2Br, we have the same peaks, but the main ones are located at 15 degrees and 30 degrees for the (100) and (200) planes, respectively. SEM examined the surface morphology of the different mixed lead halide films; the best surface was that of the CsPbBr2I sample, which is well-coated, dense, with no pinholes and no cracks, and has the largest grain size. In addition, all the mixed halide films showed good absorbance, especially between 600 nm and 900 nm, with band gap values between 1.94 and 2.92 eV. es_ES
dc.description.sponsorship Author Youssouf Doumbia acknowledges his grant from Erasmus+ KA 107. Author Amal Bouich acknowledged the post-doctoral contract supported by the RRHH, the Postdoctoral contract Margarita Salas financed with the union European Next Generation EU. This research has been funded by Grant PID2019-107137RB-C22 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe". es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof JOM Journal of the Minerals, Metals and Materials Society es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Improving Stability and Performance of Cesium Mixed Lead Halides for Photovoltaic Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11837-022-05618-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107137RB-C22/ES/MEJORANDO LA PRODUCCION DE ENERGIA SOLAR CON MATERIALES SEMICONDUCTORES BASADOS EN PEROVSKITAS INORGANICAS-CALCULOS CUANTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//KA107//Erasmus+ Program/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Doumbia, Y.; Bouich, A.; Soro, D.; Marí, B. (2023). Improving Stability and Performance of Cesium Mixed Lead Halides for Photovoltaic Applications. JOM Journal of the Minerals, Metals and Materials Society. 75(3):693-700. https://doi.org/10.1007/s11837-022-05618-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11837-022-05618-0 es_ES
dc.description.upvformatpinicio 693 es_ES
dc.description.upvformatpfin 700 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 75 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\479059 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references A. Bouich, J. Marí-Guaita, F. Baig, Y. Hameed Khattak, B.M. Soucase, and P. Palacios, Nanomaterials 12(17), 3027 (2022) es_ES
dc.description.references L. Bird, M. Milligan, and D. Lew. National Renewable Energy Lab.(NREL), Golden, CO (United States) (No. NREL/TP-6A20–60451) (2013) es_ES
dc.description.references D. Gielen, F. Boshell, and D. Saygin, Nat Mater 15(2), 117–120 (2016) es_ES
dc.description.references S. Chu, and A. Majumdar, Nature 488(7411), 294–303 (2012) es_ES
dc.description.references O.A. Al-Shahri, F.B. Ismail, M.A. Hannan, M.H. Lipu, A.Q. Al-Shetwi, R.A. Begum, et al., J. Clean. Product. 284, 125465 (2021) es_ES
dc.description.references A. Bouich, J. Marí-Guaita, B.M. Soucase, and P. Palacios, Nanomaterials 12(17), 2901 (2022) es_ES
dc.description.references A. Tarbi, T. Chtouki, A. Bouich, Y. Elkouari, H. Erguig, A. Migalska-Zalas, and A. Aissat, Opt. Mater. 131, 112704 (2022) es_ES
dc.description.references J. Marí-Guaita, A. Bouich, and B. Marí, JOM 74, 1–8 (2022) es_ES
dc.description.references M.A. Shafi, A. Bouich, K. Fradi, J.M. Guaita, L. Khan, et al. Optik 258, 168854 (2022) es_ES
dc.description.references J. Yu, G. Liu, C. Chen, Y. Li, M. Xu, and T. Wang, et al. J. Mater. Chem. C 8(19), 6326–6341 (2020) es_ES
dc.description.references A. Bouich, J. Marí-Guaita, B. Sahraoui, P. Palacios, and B. Marí, Energy Res 10, 840817 (2022) es_ES
dc.description.references J. Marí-Guaita, A. Bouich, and B. Marí, Eng. Proc. 12(1), 1 (2021) es_ES
dc.description.references Q. Chen, N. De Marco, Y.M. Yang, T.B. Song, C.C. Chen, H. Zhao, et al., Nano Today 10(3), 355–396 (2015) es_ES
dc.description.references N.J. Jeon, H. Na, E.H. Jung, T.Y. Yang, Y.G. Lee, G. Kim, et al. J. Nature Energy 3(8), 682–689 (2018) es_ES
dc.description.references Liu, K., Tian, C., Liang, Y., Luo, Y., Xie, L., & Wei, Z. Nano Res, 1–15 (2022) es_ES
dc.description.references S. Gamliel, and L. Etgar, RSC Adv 4(55), 29012–29021 (2014) es_ES
dc.description.references J.M. Ball, M.M. Lee, A. Hey, and H.J. Snaith, Energy Environ. Sci. 6(6), 1739–1743 (2013) es_ES
dc.description.references J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, and N.G. Park, Nanoscale 3(10), 4088–4093 (2011) es_ES
dc.description.references N.G. Park, J. Phys. Chem. Lett. 4(15), 2423–2429 (2013) es_ES
dc.description.references S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, et al. Science 342(6156), 341–344 (2013) es_ES
dc.description.references G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, et al. Science 342(6156), 344–347 (2013) es_ES
dc.description.references A. Bouich, J. Marí-Guaita, A. Bouich, I.G. Pradas, and B. Marí, Eng. Proc. 12(1), 81 (2022) es_ES
dc.description.references S. Bouazizi, W. Tlili, A. Bouich, B.M. Soucase, and A. Omri, Mater. Res. Express 9(9), 096402 (2022) es_ES
dc.description.references D. Yang, and D. Huo, J. Mater. Chem. C 8(20), 6640–6653 (2020) es_ES
dc.description.references C.A. López, C. Abia, M.C. Alvarez-Galván, B.K. Hong, M.V. Martínez-Huerta, F. Serrano-Sánchez, et al., ACS Omega 5(11), 5931–5938 (2020) es_ES
dc.description.references J. Deng, J. Li, Z. Yang, and M. Wang, J. Mater. Chem. C 7(40), 12415–12440 (2019) es_ES
dc.description.references P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, and J.S. Lee, Chem. Commun. 52(10), 2067–2070 (2016) es_ES
dc.description.references Y. Gao, Y. Wu, H. Lu, C. Chen, Y. Liu, X. Bai, et al. Nano Energy 59, 517–526 (2019) es_ES
dc.description.references J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, et al. J. Am. Chem. Soc. 138(49), 15829–15832 (2016) es_ES
dc.description.references J. Liang, X. Han, J.H. Yang, B. Zhang, Q. Fang, J. Zhang, et al. J. Adv. Mater. 31(51), 1903448 (2019) es_ES
dc.description.references X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li et al. ACS Appl. Mater. Interfaces 11(33), 29746–29752 (2019) es_ES
dc.description.references C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian, J. Im, et al. Cryst. Growth Design 13(7), 2722–2727 (2013) es_ES
dc.description.references D.N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko, and M.V. Kovalenko, Chem. Mater. 28(23), 8470–8474 (2016) es_ES
dc.description.references Study and characterization of hybrid perovskites and copper-indium-gallium selenide thin films for tandem solar cells. Bouich, A. (Doctoral dissertation, Universitat Politècnica de València) (2021) es_ES
dc.description.references S.A.A. Shah, M.H. Sayyad, K. Khan, K. Guo, F. Shen, and J. Sun, et al. Z. Energies 13(19), 5092 (2020) es_ES
dc.description.references J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, and W. Tress, A Hagfeldt, Science 358(6364), 739–744 (2017) es_ES
dc.description.references J. Zheng, M. Zhang, C. F. J. Lau, X. Deng, J. Kim, Q. Ma, et al. Solar Energy Materi. Solar Cells, 168, 165–171 (2017) es_ES
dc.description.references A. Bouich, J. Marí-Guaita, B. M. Soucase, and P. Palacios Nanomaterials, 12(17), 2901 (2022) es_ES
dc.description.references C.R. Dhas, A.J. Christy, R. Venkatesh, K.S. Anuratha, K. Ravichandran, A.M.E. Raj, et al. Sol. Energy 157, 58–70 (2017) es_ES
dc.description.references B.J. Babu, S. Velumani, A. Kassiba, R. Asomoza, J.A. Chavez-Carvayar, and J. Yi, Mater. Chem. Phys. 162, 59–68 (2015) es_ES
dc.description.references A. Bouich, B. Mari, L. Atourki, and S. Ullah, and M.E. Touhami, JOM 73(2), 551–557 (2021) es_ES
dc.description.references A. Dazzi, and C.B. Prater, AFM-IR: Chem. Rev.; 117(7):5146–5173 (2017) es_ES
dc.description.references H. Ezbakhe, and A.A. Donnadieu, Appl. Res. 78(2), 607–614 (1983) es_ES
dc.description.references A. Lrena, F. Millán, G. Pérez, and G. Pinto, Appl. Surf. Sci. 187(3–4), 339–346 (2002) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem