- -

A new training strategy for spatial transform networks (STN's)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new training strategy for spatial transform networks (STN's)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro Moya, Francisco es_ES
dc.contributor.author Puchalt-Rodríguez, Joan Carles es_ES
dc.contributor.author Layana-Castro, Pablo Emmanuel es_ES
dc.contributor.author García-Garví, Antonio es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.date.accessioned 2023-10-05T18:02:02Z
dc.date.available 2023-10-05T18:02:02Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 0941-0643 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197778
dc.description.abstract [EN] Spatial transform networks (STN) are widely used since they can transform images captured from different viewpoints to obtain an objective image. These networks use an image captured from any viewpoint as input and the desired image as a label. Usually, these images are segmented, but this could lead to convergence problems if the percentage of overlap between the segmented images is quite low. In this paper, we propose a new training method to facilitate the convergence of a STN in these cases, even when there is no overlap between the object's projections in the two images. This new strategy is based on the incorporation of the distance transformation images to the training, thus increasing the useful image information to provide gradients in the loss function. This new training strategy has been applied to a real case, with images of Caenorhabditis elegans, and to a simulated case, which uses artificial images to ensure that there is no overlap between the images used for the assays. In the assays carried out with these datasets, we have shown that the training convergence is strengthened, reaching a precision level for IoU metric of 0.862 and 0.984, respectively, and the computational cost has been maintained compared to the assay with segmented images, for the real case. es_ES
dc.description.sponsorship This study was also supported by Plan Nacional de I+D under the project RTI2018-094312-B-I00 and by the European FEDER funds. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Neural Computing and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Spatial transform network es_ES
dc.subject Learning strategy es_ES
dc.subject Caenorhabditis elegans es_ES
dc.subject Correspondence application es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title A new training strategy for spatial transform networks (STN's) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00521-022-06993-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-094312-B-I00-AR//MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Navarro Moya, F.; Puchalt-Rodríguez, JC.; Layana-Castro, PE.; García-Garví, A.; Sánchez Salmerón, AJ. (2022). A new training strategy for spatial transform networks (STN's). Neural Computing and Applications. 34(12):10081-10092. https://doi.org/10.1007/s00521-022-06993-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00521-022-06993-0 es_ES
dc.description.upvformatpinicio 10081 es_ES
dc.description.upvformatpfin 10092 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\485384 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K (2016) Spatial transformer networks, 2017–2025 arXiv:1506.02025 [cs.CV] es_ES
dc.description.references Li G, Xu S, Liu X, Li L, Wang C (2018) Jersey number recognition with semi-supervised spatial transformer network. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp. 1864–18647. https://doi.org/10.1109/CVPRW.2018.00231 es_ES
dc.description.references Arcos-García Álvaro, Álvarez-García JA, Soria-Morillo LM (2018) Deep neural network for traffic sign recognition systems: an analysis of spatial transformers and stochastic optimisation methods. Neural Netw 99:158–165. https://doi.org/10.1016/j.neunet.2018.01.005 es_ES
dc.description.references Aubreville M, Krappmann M, Bertram C, Klopfleisch R, Maier A (2017) A guided spatial transformer network for histology cell differentiation. In: Eurographics workshop on visual computing for biology and medicine, pp. 21–25. https://doi.org/10.2312/vcbm.20171233 es_ES
dc.description.references Lin Y, Wang M, Gu C, Qin J, Bai D, Li J (2018) A cascaded spatial transformer network for oriented equipment detection in thermal images. In: 2018 2nd IEEE conference on energy internet and energy system integration (EI2), pp. 1–5. https://doi.org/10.1109/EI2.2018.8582248 es_ES
dc.description.references Qian Y, Yang M, Zhao X, Wang C, Wang B (2020) Oriented spatial transformer network for pedestrian detection using fish-eye camera. IEEE Trans Multimed 22(2):421–431. https://doi.org/10.1109/TMM.2019.2929949 es_ES
dc.description.references Zhang X, Gao T, Gao D (2018) A new deep spatial transformer convolutional neural network for image saliency detection. Des Auto Embed Syst 22:243–256. https://doi.org/10.1007/s10617-018-9209-0 es_ES
dc.description.references Fang Y, Zhan B, Cai W, Gao S, Hu B (2019) Locality-constrained spatial transformer network for video crowd counting. In: 2019 IEEE international conference on multimedia and expo (ICME), pp. 814–819. https://doi.org/10.1109/ICME.2019.00145 es_ES
dc.description.references Li S, Günel S, Ostrek M, Ramdya P, Fua P, Rhodin H (2020) Deformation-aware unpaired image translation for pose estimation on laboratory animals. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 13155–13165. https://doi.org/10.1109/CVPR42600.2020.01317 es_ES
dc.description.references Bhagavatula C, Zhu C, Luu K, Savvides M (2017) Faster than real-time facial alignment: a 3d spatial transformer network approach in unconstrained poses. In: 2017 IEEE international conference on computer vision (ICCV), pp. 4000–4009 . https://doi.org/10.1109/ICCV.2017.429 es_ES
dc.description.references Puchalt JC, Gonzalez-Rojo JF, Gómez-Escribano AP, Vázquez-Manrique RP, Sánchez-Salmerón AJ (2022) Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes. Sci Rep 12(1):1–11 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem