- -

Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean

Mostrar el registro completo del ítem

Santos, AP.; Belfiore, C.; Urbez Lagunas, C.; Ferrando Monleón, AR.; Blazquez Rodriguez, MA.; Farías, ME. (2023). Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean. Journal of Plant Growth Regulation. 42(2):946-959. https://doi.org/10.1007/s00344-022-10605-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197844

Ficheros en el ítem

Metadatos del ítem

Título: Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean
Autor: Santos, Ana P. Belfiore, Carolina Urbez Lagunas, Cristina Ferrando Monleón, Alejandro Ramón BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL Farías, María E.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Bacteria isolated from extreme environments have been shown to promote plant growth under challenging conditions. This study aimed to examine the performance of the extremophilic microorganisms under salt stress and ...[+]
Palabras clave: Soybean , Seed germination , Salt stress , Extremophilic microorganisms
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Plant Growth Regulation. (issn: 0721-7595 )
DOI: 10.1007/s00344-022-10605-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00344-022-10605-5
Código del Proyecto:
info:eu-repo/grantAgreement/FonCyT//2010 1788/
info:eu-repo/grantAgreement/MMA//6188775-8-LP13/
Agradecimientos:
The authors acknowledge the generous financial support by the PICT V Bicentenario 2010 1788 Project (FONCyT, Argentina). This work was performed in the context of the project called "Analisis de Adaptacion al Cambio Climatico ...[+]
Tipo: Artículo

References

Ashraf M (1994) Genetic variation for salinity tolerance in spring wheat. Hereditas 120:99–104

Belfiore C, Fernandez A, Santos AP, Contreras M, Farías ME (2018a) Characterization and comparison of microbial soil diversity in two andean peatlands in different states of conservation-vega tocorpuri. J Environ Prot 6:194–210

Belfiore C, Santos AP, Contreras M, Farias ME (2018b) Isolation and characterization of plant growth promoting bacteria isolated from andean soil as potential inoculants of soybean seeds. Environ Nat Resour J. https://doi.org/10.5539/enrr.v8n3p203 [+]
Ashraf M (1994) Genetic variation for salinity tolerance in spring wheat. Hereditas 120:99–104

Belfiore C, Fernandez A, Santos AP, Contreras M, Farías ME (2018a) Characterization and comparison of microbial soil diversity in two andean peatlands in different states of conservation-vega tocorpuri. J Environ Prot 6:194–210

Belfiore C, Santos AP, Contreras M, Farias ME (2018b) Isolation and characterization of plant growth promoting bacteria isolated from andean soil as potential inoculants of soybean seeds. Environ Nat Resour J. https://doi.org/10.5539/enrr.v8n3p203

Carley HE, Watson TW (1966) A new gravimetric method forestimating root-surface areas. Soil Sci 102:289–291

Chang RZ (1994) Effect of salt on agricultural characters and chemical quality of seed in soybean. Soybean Sci 13:101–105

Clause SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Biol 49:427–251

Del-amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90

Dobereiner J (1995) Isolation and identification of aerobic nitrogen fixing bacteria from soil and plant. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, Cambridge, pp 134–141

Edbeib MF, Wahab RA, Huyop F (2016) Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 32:1–23

Egamberdieva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil 36:184–189

Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45:563–571

Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt- tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978

Garcia J, Schmidt JE, Gidekel M, Gaudin AC (2021) Impact of an antarctic rhizobacterium on root traits and productivity of soybean (Glycine max L.). J Plant Nutr 44:1818–1825

Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agr Biol Sci 1:210–215

Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. Trichoderma Gliocladium 2:229–265

Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

Hossain MS (2019) Present scenario of global salt affected soils, its management and importance of salinity research. Int Res J Biol Sci 1:1–3

Hosseini MK, Powell AA, Bingham IJ (2002) Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res 12(3):165–172

Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1–14

Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas-mediated expression of high affinity K+-transporter (HKT1) gene. Curr Sci 111:1961–1967

Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E (2020) Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol 104:1–17

Khan MA, Sahile AA, Jan R, Asaf S, Hamayun M, Imran M, Adhikari A, Kang SM, Kim MK, Lee IJ (2021) Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biol 21:1–15

Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial- mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573

Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed B-glucosidase. J Biol Chem 270:15789–15797

Lim CH, Han S, Hwang IS, Kim DS, Lee HBK, SH, (2015) The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol 56:930–942

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomanas. Annu Rev Phytopathol 39:461–490

Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

Mendoza-Hernandez CP, Perea-Velez YS, Arriola-Morales J, Martínez-Simon S, Perez- Osorio G (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188–189:53–61

Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interact 9:379–387

Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopor SK (2013) Plant growth- promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

O’Toole GA (2011) Microtiter dish biofilm formation assay. J Visual Exp Jove 47:24–37

Papiernik SK, Grieve CM, Lesch SM, Yates SR (2005) Effects of salinity, imazethapyr, and chlorimuron application on soybean growth and yield. Commun Soil Sci Plant Anal 36:951–967

Penrose DM, Glick R (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

Puchulú ME (2008) Salinización de los suelos. Su incidencia en la provincia de Tucumán y en la República Argentina. Acta Geológica Lilloana 21:81–94

Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251:73–82

Rehman S, Harris PJC, Bourne WF, Wilkin J (1996) The effect of sodium chloride on germination and the potassium and calcium contents of acacia seeds. Seed Sci Technol 25:45–57

Rodríguez DM, Schulz GA, Tenti Vuegen LM (2019) Distribución de suelos afectados por sales en Argentina. Actas De La Red Argentina De Salinidad (RAS) 6:24–30

Sapsirisopa S, Chookietwattana K, Maneewan K, Khangkhan P (2009) Effect of salt- tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. Asian J Food Agric Ind Organ 2:69-S74

Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H, Zhou W, Ding Jun DuJ, Liu J, Yang F, Wang Q, Ding J, Du J, Liu J, Yang F, Yang F, Wang Q, Liu W, Yong T, Wang X, Feng Y, Yang W (2017) Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8:1372

Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red peper seedlings (Capsicum annuu L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

Srinivasan R, Yandigeri MS, Kashyap A (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19(4):427–434

Steinborn J, Roughley RJ (1974) Sodium chloride as a cause of low numbers of rhizobium in legume inoculants. J Appl Microbiol 37:93–99

Szymańska S, Piernik A, Hrynkiewicz K (2013) Metabolic potential of microorganisms associated with the halophyte Aster tripolium L. in saline soils. Ecol Quest 18(1):9–19

Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K, Kawashima M, Ichikawa T, Shimada H, Matsui M (2005) shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. Plant J 42:13–22

Tang YW, Bonner J (1948) The enzymatic inactivation of indole acetic acid. II. The physiology of the enzyme. Am J Bot 35:570–578

Tapia-Vázquez I, Sánchez-Cruz R, Arroyo-Domínguez M, Lira-Ruan V, Sánchez- Reyes A, del Rayo S-CM, Padilla-Chacón D, Batista-García RA, Folch- Mallol JL (2020) Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico. Microbiol Res 232:126394

Tian J, Chen M, Zhang J, Li K, Song T, Zhang X, Yao Y (2017) Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars. Hortic Res. 4:17070

Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607

Vázquez P, Holguin G, Puente E, Lopez-Cortez A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in semiarid costal lagoon. Biol Fertil Soils 30:460–468

Verhoef R, De Waard P, Schols HA, Siika-aho M, Voragen AG (2003) Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide. Carbohydr Res 338:1851–1859

Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up regulated by salt stress, osmotic stress, and ABA. J Plant Physiol 162(1):81–89

Wang L, Wu N, Zhu Y, Song W, Zhao W, Li Y, Hu Y (2015) The divergence and positive selection of the plant-specific BURP-containing protein family. Ecol Evol 5(22):5394–5412

Xu HL, Li YX, Yan YM, Wang K, Gao Y, Hu Y (2010) Genome-scale identification of Soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol 10:197–212

Yadav AN (2017) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci 1(1):30

Zeng A, Chen P, Korth KL, Ping J, Thomas J, Wu C, Srivastava S, Pereira A, Hancock F, Brye K, Ma J (2019) RNA sequencing analysis of salt tolerance in soybean (Glycine max). Genomics 111(4):629–635

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem