- -

Multi-view informed attention-based model for Irony and Satire detection in Spanish variants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-view informed attention-based model for Irony and Satire detection in Spanish variants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortega-Bueno, Reynier es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.contributor.author Medina-Pagola, José E. es_ES
dc.date.accessioned 2023-10-06T18:01:19Z
dc.date.available 2023-10-06T18:01:19Z
dc.date.issued 2022-01-10 es_ES
dc.identifier.issn 0950-7051 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197845
dc.description.abstract [EN] Making machines understand language and reasoning on it has been one of the most challenging problems addressed by Artificial Intelligent researchers. This challenge increases when figurative language is used for communicating complex meanings, intentions, emotions and attitudes in creative and funny ways. In fact, sentiment analysis approaches struggle when facing irony, satire and other figurative languages, particularly those where the explanation of a prediction might arguably be as necessary as the prediction itself. This paper describes a new model MvAttLSTM based on deep learning for irony and satire detection in tweets written in distinct Spanish variants. The proposed model is based on an attentive-LSTM informed with three additional views learned from distinct perspectives. We investigate two strategies to pass these views into MvAttLSTM. We perform an extensive evaluation on three corpora, one for irony detection and two for satire detection. Moreover, in order to study the robustness of our proposed model, we investigate its performance on humor recognition. Experiments confirm that the proposed views help our model to improve its performance. Moreover, they show that affective information benefits our model to detect irony and satire. In particular, a first analysis of the results highlights the discriminating power of emotional features obtained from SenticNet and SEL lexicon. Overall, our system achieves the state-of-the-art performance in irony and satire detection in Spanish variants and competitive results in humor recognition. es_ES
dc.description.sponsorship The work of the first two authors was in the framework of the research project MISMIS-FAKEnHATE on MISinformation and MIScommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31) , funded by Spanish Ministry of Science and Innovation, and DeepPattern (PROMETEO/2019/121) , funded by the Generalitat Valenciana, Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Knowledge-Based Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Irony and satire es_ES
dc.subject Attention mechanism es_ES
dc.subject Linguistic features es_ES
dc.subject Contextualized pre-trained embedding es_ES
dc.subject Fusing representation es_ES
dc.subject Spanish variants es_ES
dc.subject Figurative language es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Multi-view informed attention-based model for Irony and Satire detection in Spanish variants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.knosys.2021.107597 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F121//DEEP LEARNING FOR ADAPTATIVE AND MULTIMODAL INTERACTION IN PATTERN RECOGNITION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Ortega-Bueno, R.; Rosso, P.; Medina-Pagola, JE. (2022). Multi-view informed attention-based model for Irony and Satire detection in Spanish variants. Knowledge-Based Systems. 235:1-24. https://doi.org/10.1016/j.knosys.2021.107597 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.knosys.2021.107597 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 235 es_ES
dc.relation.pasarela S\482280 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem