Mostrar el registro sencillo del ítem
dc.contributor.author | Peñaranda-Cebrián, Cristian | es_ES |
dc.contributor.author | Reaño, Carlos | es_ES |
dc.contributor.author | Silla, Federico | es_ES |
dc.date.accessioned | 2023-10-10T18:02:34Z | |
dc.date.available | 2023-10-10T18:02:34Z | |
dc.date.issued | 2022-10-17 | es_ES |
dc.identifier.issn | 1532-0626 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197957 | |
dc.description.abstract | [EN] Internet of Things (IoT) devices are usually low performance nodes connected by low bandwidth networks. To improve performance in such scenarios, some computations could be done at the edge of the network. However, edge devices may not have enough computing power to accelerate applications such as the popular machine learning ones. Using remote virtual graphics processing units (GPUs) can address this concern by accelerating applications leveraging a GPU installed in a remote device. However, this requires exchanging data with the remote GPU across the slow network. To address the problem with the slow network, the data to be exchanged with the remote GPU could be compressed. In this article, we explore the suitability of using data compression in the context of remote GPU virtualization frameworks in edge scenarios executing machine learning applications. We use popular machine learning applications to carry out such exploration. After characterizing the GPU data transfers of these applications, we analyze the usage of existing compression libraries for compressing those data transfers to/from the remote GPU. Our exploration shows that transferring compressed data becomes more beneficial as networks get slower, reducing transfer time by up to 10 times. Our analysis also reveals that efficient integration of compression into remote GPU virtualization frameworks is strongly required. | es_ES |
dc.description.sponsorship | European Union's Horizon 2020 Research and Innovation Programme, Grant/Award Numbers: 101016577, 101017861. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Concurrency and Computation: Practice and Experience | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Data compression | es_ES |
dc.subject | Edge computing | es_ES |
dc.subject | GPU virtualization | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cpe.7328 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101016577/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101017861/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Peñaranda-Cebrián, C.; Reaño, C.; Silla, F. (2022). Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units. Concurrency and Computation: Practice and Experience. 35(20):1-19. https://doi.org/10.1002/cpe.7328 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cpe.7328 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 20 | es_ES |
dc.relation.pasarela | S\474271 | es_ES |
dc.contributor.funder | European Commission | es_ES |