- -

Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peñaranda-Cebrián, Cristian es_ES
dc.contributor.author Reaño, Carlos es_ES
dc.contributor.author Silla, Federico es_ES
dc.date.accessioned 2023-10-10T18:02:34Z
dc.date.available 2023-10-10T18:02:34Z
dc.date.issued 2022-10-17 es_ES
dc.identifier.issn 1532-0626 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197957
dc.description.abstract [EN] Internet of Things (IoT) devices are usually low performance nodes connected by low bandwidth networks. To improve performance in such scenarios, some computations could be done at the edge of the network. However, edge devices may not have enough computing power to accelerate applications such as the popular machine learning ones. Using remote virtual graphics processing units (GPUs) can address this concern by accelerating applications leveraging a GPU installed in a remote device. However, this requires exchanging data with the remote GPU across the slow network. To address the problem with the slow network, the data to be exchanged with the remote GPU could be compressed. In this article, we explore the suitability of using data compression in the context of remote GPU virtualization frameworks in edge scenarios executing machine learning applications. We use popular machine learning applications to carry out such exploration. After characterizing the GPU data transfers of these applications, we analyze the usage of existing compression libraries for compressing those data transfers to/from the remote GPU. Our exploration shows that transferring compressed data becomes more beneficial as networks get slower, reducing transfer time by up to 10 times. Our analysis also reveals that efficient integration of compression into remote GPU virtualization frameworks is strongly required. es_ES
dc.description.sponsorship European Union's Horizon 2020 Research and Innovation Programme, Grant/Award Numbers: 101016577, 101017861. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Concurrency and Computation: Practice and Experience es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Data compression es_ES
dc.subject Edge computing es_ES
dc.subject GPU virtualization es_ES
dc.subject Machine learning es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cpe.7328 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101016577/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101017861/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Peñaranda-Cebrián, C.; Reaño, C.; Silla, F. (2022). Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units. Concurrency and Computation: Practice and Experience. 35(20):1-19. https://doi.org/10.1002/cpe.7328 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cpe.7328 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\474271 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem