- -

CAD training for digital product quality: a formative approach with computer-based adaptable resources for self-assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CAD training for digital product quality: a formative approach with computer-based adaptable resources for self-assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agost, Maria-Jesus es_ES
dc.contributor.author Company, Pedro es_ES
dc.contributor.author Contero, Manuel es_ES
dc.contributor.author Camba, Jorge D. es_ES
dc.date.accessioned 2023-10-10T18:03:11Z
dc.date.available 2023-10-10T18:03:11Z
dc.date.issued 2022-04 es_ES
dc.identifier.issn 0957-7572 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197968
dc.description.abstract [EN] As the engineering and manufacturing sectors transform their processes into those of a digital enterprise, future designers and engineers must be trained to guarantee the quality of the digital models that are created and consumed throughout the product's lifecycle. Formative training approaches, particularly those based on online rubrics, have been proven highly effective for improving CAD modeling practices and the quality of the corresponding outcomes. However, an effective use of formative rubrics to improve performance must consider two main factors: a proper understanding of the rubric and an accurate self-assessment. In this paper we develop these factors by proposing CAD training based on self-assessment through online formative rubrics enriched with adaptable resources. We analyzed self-assessment data, such as time spent, scoring differences between trainee and instructor or use of the adaptable resources, of fourteen different CAD exams. Results show that resources are more effective when used without any incentives. The comparison of assessments by quality criterion can facilitate the identification of issues that may remain unclear to trainees during the learning process. These results can guide the definition of new strategies for self-training processes and tools, which can contribute to the higher-quality outcomes and CAD practices that are required in model-bases engineering environments. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Technology and Design Education es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Model-based enterprise es_ES
dc.subject CAD model es_ES
dc.subject Enhanced quality es_ES
dc.subject E-rubric es_ES
dc.subject Adaptable resource es_ES
dc.subject Formative self-assessment es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title CAD training for digital product quality: a formative approach with computer-based adaptable resources for self-assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10798-020-09651-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Agost, M.; Company, P.; Contero, M.; Camba, JD. (2022). CAD training for digital product quality: a formative approach with computer-based adaptable resources for self-assessment. International Journal of Technology and Design Education. 32(2):1393-1411. https://doi.org/10.1007/s10798-020-09651-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10798-020-09651-5 es_ES
dc.description.upvformatpinicio 1393 es_ES
dc.description.upvformatpfin 1411 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\488939 es_ES
dc.description.references Ackermans, K., Rusman, E., Brand-Gruwell, S., & Specht, M. (2019). Solving instructional design dilemmas to develop a Video Enhanced Rubric with modeling examples to support mental model development of complex skills: The Viewbrics-project use case. Educational Technology Research and Development, 67, 983–1002. es_ES
dc.description.references Agosta, S., & Sartori, G. (2013). The autobiographical IAT: a review. Frontiers in Psychology, 41, 519. es_ES
dc.description.references Andrade, H., & Du, Y. (2005). Student perspectives on rubric-referenced assessment. Practical Assessment, Research and Evaluation, 10(3), 1–11. es_ES
dc.description.references Baxter, P., & Norman, G. (2011). Self-assessment or self deception? a lack of association between nursing students’ self-assessment and performance. Journal of Advanced Nursing, 67(11), 2406–2413. es_ES
dc.description.references Bertoline, G. R., Hartman, N. W., & Ross, W. A. (2019). Fundamentals of Solid Modeling and Graphic Communication. New York: McGraw Hill Education. es_ES
dc.description.references Bodein, Y., Rose, B., & Caillaud, E. (2013). A roadmap for parametric CAD efficiency in the automotive industry. Computer-Aided Design, 45(10), 1198–1214. https://doi.org/10.1016/j.cad.2013.05.006. es_ES
dc.description.references Boud, D., & Falchikov, N. (1989). Quantitative studies of student self-assessment in higher-education - A critical analysis of findings. Higher Education, 18(5), 529–549. es_ES
dc.description.references Company, P., Contero, M., Otey, J., & Plumed, R. (2015). Approach for developing coordinated rubrics to convey quality criteria in MCAD training. Computer-Aided Design, 63, 101–117. es_ES
dc.description.references Company, P., Contero, M., Otey, J., Camba, J. D., Agost, M. J., & Pérez-López, D. C. (2017). Web-based system for adaptable rubrics: Case study on CAD assessment. Journal of Educational Technology & Society, 20(3), 24–41. es_ES
dc.description.references Company, P., & González Lluch, C. (2013). CAD 3D con Solidworks® Tomo I: Diseño básico. Publicacions Universitat Jaume I. https://doi.org/10.6035/Sapientia86. es_ES
dc.description.references Company, P., Otey, J., Contero, M., Agost, M. J., & Almiñana, A. (2016). Implementation of adaptable rubrics for CAD model quality formative assessment. International Journal of Engineering Education, 32(2A), 749–761. es_ES
dc.description.references Contero, M., Company, P., Vila, C., & Aleixos, N. (2002). Product data quality and collaborative engineering. IEEE Computer Graphics and Applications, 22(3), 32–42. es_ES
dc.description.references Dankwort, C. W., Weidlich, R., Guenther, B., & Blaurock, J. E. (2004). Engineers’ CAx education - it’s not only CAD. Computer-Aided Design, 36(14), 1439–1450. https://doi.org/10.1016/j.cad.2004.02.011. es_ES
dc.description.references Dodaj, A. (2012). Social desirability and self-reports: testing a content and response-style model of socially desirable responding. Europe’s Journal of Psychology, 8(4), 651–686. es_ES
dc.description.references Domínguez, C., Jaime, A., Sanchez, A., Blanco, J. M., & Heras, J. (2016). A comparative analysis of the consistency and difference among online self-, peer-, external- and instructor-assessments: The competitive effect. Computers in Human Behavior, 60, 112–120. es_ES
dc.description.references Dunning, D., Heath, C., & Suls, J. M. (2004). Flawed self-assessment: Implications for health, education, and the workplace. Psychological science in the public interest: a journal of the American Psychological Society, 5(3), 69–106. es_ES
dc.description.references Ekman, P., & O’Sullivan, M. (2006). From flawed self-assessment to blatant whoppers: The utility of voluntary and involuntary behavior in detecting deception. Behavioral Sciences & the Law, 24, 673–686. es_ES
dc.description.references Evans, A. W., Leeson, R. M. A., Newton John, T. R. O., & Petrie, A. (2005). The influence of self-deception and impression management upon self-assessment in oral surgery. British Dental Journal, 198, 765–769. es_ES
dc.description.references Falchikov, N., & Boud, D. (1989). Student self-assessment in higher-education - a meta-analysis. Review of Educational Research, 59(4), 395–430. es_ES
dc.description.references Falchikov, N., & Goldfinch, J. (2000). Student peer assessment in higher education: A meta-analysis comparing peer and teacher marks. Review of Educational Research, 70(3), 287–322. es_ES
dc.description.references Gregg, A. P. (2007). When vying reveals lying: The timed antagonistic response alethiometer. Applied Cognitive Psychology, 21(5), 621–647. es_ES
dc.description.references Hamade, R. F. (2009). Profiling the desirable CAD trainee: Technical background, personality attributes, and learning preferences. Journal of Mechanical Design, 131(12), 121009. es_ES
dc.description.references Hamade, R. F., & Artail, H. A. (2008). A study of the influence of technical attributes of beginner CAD users on their performance. Computer-Aided Design, 40(2), 262–272. https://doi.org/10.1016/j.cad.2007.11.001. es_ES
dc.description.references Holtgraves, T. (2004). Social desirability and self-reports: Testing models of socially desirable responding. Personality and Social Psychology Bulletin, 30(2), 161–172. es_ES
dc.description.references Jonsson, A., & Svingby, G. (2007). The use of scoring rubrics: Reliability, validity and educational consequences. Educational Research Review, 2, 130–144. es_ES
dc.description.references Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psychological monographs, 54(6), 1–95. es_ES
dc.description.references McManus, I. C., Lissauer, T., & Williams, S. E. (2005). Learning in practice. Detecting cheating in written medical examinations by statistical analysis of similarity of answers: Pilot study. BMJ, 330, 1064. es_ES
dc.description.references Morris, J.P. (2019). The Necessity of AutoNomous Evaluation of Parametric Modeling and Drafting Instruction. In: Proceedings of the ASEE Annual Conference & Exposition, Tampa, Florida. https://peer.asee.org/33409. es_ES
dc.description.references Myers, D. G., & Ridl, J. (1979). Can we all be better than average. Psychology Today, 13(3), 89. es_ES
dc.description.references Nikou, S. A., & EcoNomides, A. A. (2016). The impact of paper-based, computer-based and mobile-based self-assessment on students’s cience motivation and achievement. Computers in Human Behavior, 55, 1241–1248. es_ES
dc.description.references Parke, C. S. (2001). An approach that examines sources of misfit to improve performance assessment items and rubrics. Educational Assessment, 7(3), 201–225. es_ES
dc.description.references Paulhus, D. L. (1984). 2-Component models of socially desirable responding. Journal of Personality and Social Psychology, 46(3), 598–609. es_ES
dc.description.references Paulhus, D. L., & John, O. P. (1998). Egoistic and moralistic biases in self-perception: The interplay of self-deceptive styles with basic traits and motives. Journal of Personality, 66(6), 1025–1060. es_ES
dc.description.references Piegl, L. A. (2005). Ten challenges in computer-aided design. Computer-Aided Design, 37(4), 461–470. es_ES
dc.description.references Popham, W. J. (1997). What´s wrong and what´s right with rubrics? Educational Leadership, 55(2), 72–75. es_ES
dc.description.references Reddy, M., & Andrade, H. (2010). A review of rubrics use in higher education. Assessment & Evaluation in Higher Education, 35(4), 435–448. es_ES
dc.description.references Reinhard, M. A., Dickhäuser, O., Marksteiner, T., & Sporer, S. L. (2011). The case of Pinoccio: teachers’ ability to detect deception. Social Psychology of Education, 14, 299–318. es_ES
dc.description.references Rossignac, J. (2004). Education-driven research in CAD. Computer-Aided Design, 36(14), 1461–1469. https://doi.org/10.1016/j.cad.2003.10.008. es_ES
dc.description.references Schumacher, C., & Ifenthaler, D. (2018). Features students really expect from learning analytics. Computers in Human Behavior, 78, 397–407. es_ES
dc.description.references Sundström, A. (2005). Self-assessment of kNowledge and abilities. A literature study. Educational Measurement, 54. Umea University. es_ES
dc.description.references Walczyk, J. J., Mahoney, K. T., Doverspiek, D., & Griffith-Ross, D. A. (2009). Cognitive lie detection: Response time and consistency of answers as cues to deception. Journal of Business and Psychology, 24(1), 33–49. es_ES
dc.description.references Willard, G., & Gramzow, R. H. (2009). Beyond oversights, lies, and pies in the sky: Exaggeration as goal projection. Personality and Social Psychology Bulletin, 35(4), 477–792. es_ES
dc.description.references Xu, W., & Galloway, R. (2005). Using behavioral modeling technology to capture designer’s intent. Computers in Human Behavior, 21, 395–405. es_ES
dc.description.references Ye, X., Peng, W., Chen, Z., & Cai, Y. (2004). Today’s students, tomorrow’s engineers: An industrial perspective on CAD education. Computer-Aided Design, 36(14), 1451–1460. https://doi.org/10.1016/j.cad.2003.11.006. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem