Mostrar el registro sencillo del ítem
dc.contributor.author | Agost, Maria-Jesus | es_ES |
dc.contributor.author | Company, Pedro | es_ES |
dc.contributor.author | Contero, Manuel | es_ES |
dc.contributor.author | Camba, Jorge D. | es_ES |
dc.date.accessioned | 2023-10-10T18:03:11Z | |
dc.date.available | 2023-10-10T18:03:11Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.issn | 0957-7572 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197968 | |
dc.description.abstract | [EN] As the engineering and manufacturing sectors transform their processes into those of a digital enterprise, future designers and engineers must be trained to guarantee the quality of the digital models that are created and consumed throughout the product's lifecycle. Formative training approaches, particularly those based on online rubrics, have been proven highly effective for improving CAD modeling practices and the quality of the corresponding outcomes. However, an effective use of formative rubrics to improve performance must consider two main factors: a proper understanding of the rubric and an accurate self-assessment. In this paper we develop these factors by proposing CAD training based on self-assessment through online formative rubrics enriched with adaptable resources. We analyzed self-assessment data, such as time spent, scoring differences between trainee and instructor or use of the adaptable resources, of fourteen different CAD exams. Results show that resources are more effective when used without any incentives. The comparison of assessments by quality criterion can facilitate the identification of issues that may remain unclear to trainees during the learning process. These results can guide the definition of new strategies for self-training processes and tools, which can contribute to the higher-quality outcomes and CAD practices that are required in model-bases engineering environments. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | International Journal of Technology and Design Education | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Model-based enterprise | es_ES |
dc.subject | CAD model | es_ES |
dc.subject | Enhanced quality | es_ES |
dc.subject | E-rubric | es_ES |
dc.subject | Adaptable resource | es_ES |
dc.subject | Formative self-assessment | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | CAD training for digital product quality: a formative approach with computer-based adaptable resources for self-assessment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10798-020-09651-5 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Agost, M.; Company, P.; Contero, M.; Camba, JD. (2022). CAD training for digital product quality: a formative approach with computer-based adaptable resources for self-assessment. International Journal of Technology and Design Education. 32(2):1393-1411. https://doi.org/10.1007/s10798-020-09651-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10798-020-09651-5 | es_ES |
dc.description.upvformatpinicio | 1393 | es_ES |
dc.description.upvformatpfin | 1411 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 32 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\488939 | es_ES |
dc.description.references | Ackermans, K., Rusman, E., Brand-Gruwell, S., & Specht, M. (2019). Solving instructional design dilemmas to develop a Video Enhanced Rubric with modeling examples to support mental model development of complex skills: The Viewbrics-project use case. Educational Technology Research and Development, 67, 983–1002. | es_ES |
dc.description.references | Agosta, S., & Sartori, G. (2013). The autobiographical IAT: a review. Frontiers in Psychology, 41, 519. | es_ES |
dc.description.references | Andrade, H., & Du, Y. (2005). Student perspectives on rubric-referenced assessment. Practical Assessment, Research and Evaluation, 10(3), 1–11. | es_ES |
dc.description.references | Baxter, P., & Norman, G. (2011). Self-assessment or self deception? a lack of association between nursing students’ self-assessment and performance. Journal of Advanced Nursing, 67(11), 2406–2413. | es_ES |
dc.description.references | Bertoline, G. R., Hartman, N. W., & Ross, W. A. (2019). Fundamentals of Solid Modeling and Graphic Communication. New York: McGraw Hill Education. | es_ES |
dc.description.references | Bodein, Y., Rose, B., & Caillaud, E. (2013). A roadmap for parametric CAD efficiency in the automotive industry. Computer-Aided Design, 45(10), 1198–1214. https://doi.org/10.1016/j.cad.2013.05.006. | es_ES |
dc.description.references | Boud, D., & Falchikov, N. (1989). Quantitative studies of student self-assessment in higher-education - A critical analysis of findings. Higher Education, 18(5), 529–549. | es_ES |
dc.description.references | Company, P., Contero, M., Otey, J., & Plumed, R. (2015). Approach for developing coordinated rubrics to convey quality criteria in MCAD training. Computer-Aided Design, 63, 101–117. | es_ES |
dc.description.references | Company, P., Contero, M., Otey, J., Camba, J. D., Agost, M. J., & Pérez-López, D. C. (2017). Web-based system for adaptable rubrics: Case study on CAD assessment. Journal of Educational Technology & Society, 20(3), 24–41. | es_ES |
dc.description.references | Company, P., & González Lluch, C. (2013). CAD 3D con Solidworks® Tomo I: Diseño básico. Publicacions Universitat Jaume I. https://doi.org/10.6035/Sapientia86. | es_ES |
dc.description.references | Company, P., Otey, J., Contero, M., Agost, M. J., & Almiñana, A. (2016). Implementation of adaptable rubrics for CAD model quality formative assessment. International Journal of Engineering Education, 32(2A), 749–761. | es_ES |
dc.description.references | Contero, M., Company, P., Vila, C., & Aleixos, N. (2002). Product data quality and collaborative engineering. IEEE Computer Graphics and Applications, 22(3), 32–42. | es_ES |
dc.description.references | Dankwort, C. W., Weidlich, R., Guenther, B., & Blaurock, J. E. (2004). Engineers’ CAx education - it’s not only CAD. Computer-Aided Design, 36(14), 1439–1450. https://doi.org/10.1016/j.cad.2004.02.011. | es_ES |
dc.description.references | Dodaj, A. (2012). Social desirability and self-reports: testing a content and response-style model of socially desirable responding. Europe’s Journal of Psychology, 8(4), 651–686. | es_ES |
dc.description.references | Domínguez, C., Jaime, A., Sanchez, A., Blanco, J. M., & Heras, J. (2016). A comparative analysis of the consistency and difference among online self-, peer-, external- and instructor-assessments: The competitive effect. Computers in Human Behavior, 60, 112–120. | es_ES |
dc.description.references | Dunning, D., Heath, C., & Suls, J. M. (2004). Flawed self-assessment: Implications for health, education, and the workplace. Psychological science in the public interest: a journal of the American Psychological Society, 5(3), 69–106. | es_ES |
dc.description.references | Ekman, P., & O’Sullivan, M. (2006). From flawed self-assessment to blatant whoppers: The utility of voluntary and involuntary behavior in detecting deception. Behavioral Sciences & the Law, 24, 673–686. | es_ES |
dc.description.references | Evans, A. W., Leeson, R. M. A., Newton John, T. R. O., & Petrie, A. (2005). The influence of self-deception and impression management upon self-assessment in oral surgery. British Dental Journal, 198, 765–769. | es_ES |
dc.description.references | Falchikov, N., & Boud, D. (1989). Student self-assessment in higher-education - a meta-analysis. Review of Educational Research, 59(4), 395–430. | es_ES |
dc.description.references | Falchikov, N., & Goldfinch, J. (2000). Student peer assessment in higher education: A meta-analysis comparing peer and teacher marks. Review of Educational Research, 70(3), 287–322. | es_ES |
dc.description.references | Gregg, A. P. (2007). When vying reveals lying: The timed antagonistic response alethiometer. Applied Cognitive Psychology, 21(5), 621–647. | es_ES |
dc.description.references | Hamade, R. F. (2009). Profiling the desirable CAD trainee: Technical background, personality attributes, and learning preferences. Journal of Mechanical Design, 131(12), 121009. | es_ES |
dc.description.references | Hamade, R. F., & Artail, H. A. (2008). A study of the influence of technical attributes of beginner CAD users on their performance. Computer-Aided Design, 40(2), 262–272. https://doi.org/10.1016/j.cad.2007.11.001. | es_ES |
dc.description.references | Holtgraves, T. (2004). Social desirability and self-reports: Testing models of socially desirable responding. Personality and Social Psychology Bulletin, 30(2), 161–172. | es_ES |
dc.description.references | Jonsson, A., & Svingby, G. (2007). The use of scoring rubrics: Reliability, validity and educational consequences. Educational Research Review, 2, 130–144. | es_ES |
dc.description.references | Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psychological monographs, 54(6), 1–95. | es_ES |
dc.description.references | McManus, I. C., Lissauer, T., & Williams, S. E. (2005). Learning in practice. Detecting cheating in written medical examinations by statistical analysis of similarity of answers: Pilot study. BMJ, 330, 1064. | es_ES |
dc.description.references | Morris, J.P. (2019). The Necessity of AutoNomous Evaluation of Parametric Modeling and Drafting Instruction. In: Proceedings of the ASEE Annual Conference & Exposition, Tampa, Florida. https://peer.asee.org/33409. | es_ES |
dc.description.references | Myers, D. G., & Ridl, J. (1979). Can we all be better than average. Psychology Today, 13(3), 89. | es_ES |
dc.description.references | Nikou, S. A., & EcoNomides, A. A. (2016). The impact of paper-based, computer-based and mobile-based self-assessment on students’s cience motivation and achievement. Computers in Human Behavior, 55, 1241–1248. | es_ES |
dc.description.references | Parke, C. S. (2001). An approach that examines sources of misfit to improve performance assessment items and rubrics. Educational Assessment, 7(3), 201–225. | es_ES |
dc.description.references | Paulhus, D. L. (1984). 2-Component models of socially desirable responding. Journal of Personality and Social Psychology, 46(3), 598–609. | es_ES |
dc.description.references | Paulhus, D. L., & John, O. P. (1998). Egoistic and moralistic biases in self-perception: The interplay of self-deceptive styles with basic traits and motives. Journal of Personality, 66(6), 1025–1060. | es_ES |
dc.description.references | Piegl, L. A. (2005). Ten challenges in computer-aided design. Computer-Aided Design, 37(4), 461–470. | es_ES |
dc.description.references | Popham, W. J. (1997). What´s wrong and what´s right with rubrics? Educational Leadership, 55(2), 72–75. | es_ES |
dc.description.references | Reddy, M., & Andrade, H. (2010). A review of rubrics use in higher education. Assessment & Evaluation in Higher Education, 35(4), 435–448. | es_ES |
dc.description.references | Reinhard, M. A., Dickhäuser, O., Marksteiner, T., & Sporer, S. L. (2011). The case of Pinoccio: teachers’ ability to detect deception. Social Psychology of Education, 14, 299–318. | es_ES |
dc.description.references | Rossignac, J. (2004). Education-driven research in CAD. Computer-Aided Design, 36(14), 1461–1469. https://doi.org/10.1016/j.cad.2003.10.008. | es_ES |
dc.description.references | Schumacher, C., & Ifenthaler, D. (2018). Features students really expect from learning analytics. Computers in Human Behavior, 78, 397–407. | es_ES |
dc.description.references | Sundström, A. (2005). Self-assessment of kNowledge and abilities. A literature study. Educational Measurement, 54. Umea University. | es_ES |
dc.description.references | Walczyk, J. J., Mahoney, K. T., Doverspiek, D., & Griffith-Ross, D. A. (2009). Cognitive lie detection: Response time and consistency of answers as cues to deception. Journal of Business and Psychology, 24(1), 33–49. | es_ES |
dc.description.references | Willard, G., & Gramzow, R. H. (2009). Beyond oversights, lies, and pies in the sky: Exaggeration as goal projection. Personality and Social Psychology Bulletin, 35(4), 477–792. | es_ES |
dc.description.references | Xu, W., & Galloway, R. (2005). Using behavioral modeling technology to capture designer’s intent. Computers in Human Behavior, 21, 395–405. | es_ES |
dc.description.references | Ye, X., Peng, W., Chen, Z., & Cai, Y. (2004). Today’s students, tomorrow’s engineers: An industrial perspective on CAD education. Computer-Aided Design, 36(14), 1451–1460. https://doi.org/10.1016/j.cad.2003.11.006. | es_ES |