- -

Multi-PheWAS intersection approach to identify sex differences across comorbidities in 59 140 pediatric patients with autism spectrum disorder

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-PheWAS intersection approach to identify sex differences across comorbidities in 59 140 pediatric patients with autism spectrum disorder

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gutiérrez-Sacristán, Alba es_ES
dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.contributor.author de Niz, Carlos es_ES
dc.contributor.author Jalali, Niloofar es_ES
dc.contributor.author DeSain, Thomas N. es_ES
dc.contributor.author Kumar, Ranjay es_ES
dc.contributor.author Zachariasse, Joany M. es_ES
dc.contributor.author Fox, Kathe P. es_ES
dc.contributor.author Palmer, Nathan es_ES
dc.contributor.author Kohane, Isaac es_ES
dc.contributor.author Avillach, Paul es_ES
dc.date.accessioned 2023-10-11T18:02:06Z
dc.date.available 2023-10-11T18:02:06Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 1067-5027 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198021
dc.description.abstract [EN] Objective: To identify differences related to sex and define autism spectrum disorder (ASD) comorbidities female-enriched through a comprehensive multi-PheWAS intersection approach on big, real-world data. Although sex difference is a consistent and recognized feature of ASD, additional clinical correlates could help to identify potential disease subgroups, based on sex and age. Materials and Methods: We performed a systematic comorbidity analysis on 1860 groups of comorbidities exploring all spectrum of known disease, in 59 140 individuals (11 440 females) with ASD from 4 age groups. We explored ASD sex differences in 2 independent real-world datasets, across all potential comorbidities by comparing (1) females with ASD vs males with ASD and (2) females with ASD vs females without ASD. Results: We identified 27 different comorbidities that appeared significantly more frequently in females with ASD. The comorbidities were mostly neurological (eg, epilepsy, odds ratio [OR]>1.8, 3-18 years of age), congenital (eg, chromosomal anomalies, OR>2, 3-18 years of age), and mental disorders (eg, intellectual disability, OR>1.7, 6-18 years of age). Novel comorbidities included endocrine metabolic diseases (eg, failure to thrive, OR=2.5, ages 0-2), digestive disorders (gastroesophageal reflux disease: OR=1.7, 6-11 years of age; and constipation: OR>1.6, 3-11 years of age), and sense organs (strabismus: OR>1.8, 3-18 years of age). Discussion: A multi-PheWAS intersection approach on real-world data as presented in this study uniquely contributes to the growing body of research regarding sex-based comorbidity analysis in ASD population. Conclusions: Our findings provide insights into female-enriched ASD comorbidities that are potentially important in diagnosis, as well as the identification of distinct comorbidity patterns influencing anticipatory treatment or referrals. es_ES
dc.description.sponsorship This work has been supported by the National Institutes of Health BD2K grant U54HG007963. JMZ received grants from Stichting de Drie Lichten and Stichting Sophia Kinderziekenhuis Fonds for a research internship at Harvard Medical School. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of the American Medical Informatics Association es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Autism spectrum disorder es_ES
dc.subject Sex characteristics es_ES
dc.subject Comorbidity es_ES
dc.subject Large-scale es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Multi-PheWAS intersection approach to identify sex differences across comorbidities in 59 140 pediatric patients with autism spectrum disorder es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jamia/ocab144 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U54HG007963/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Gutiérrez-Sacristán, A.; Sáez Silvestre, C.; De Niz, C.; Jalali, N.; Desain, TN.; Kumar, R.; Zachariasse, JM.... (2021). Multi-PheWAS intersection approach to identify sex differences across comorbidities in 59 140 pediatric patients with autism spectrum disorder. Journal of the American Medical Informatics Association. 29(2):230-238. https://doi.org/10.1093/jamia/ocab144 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jamia/ocab144 es_ES
dc.description.upvformatpinicio 230 es_ES
dc.description.upvformatpfin 238 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 34405856 es_ES
dc.identifier.pmcid PMC8757290 es_ES
dc.relation.pasarela S\459971 es_ES
dc.contributor.funder Harvard University es_ES
dc.contributor.funder Stichting de Drie Lichten es_ES
dc.contributor.funder Stichting Vrienden van het Sophia es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem