- -

From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-vs-rest classification strategy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-vs-rest classification strategy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez-Serrano, Santiago es_ES
dc.contributor.author Rodrigo, Miguel es_ES
dc.contributor.author Calvo Saiz, Conrado Javier es_ES
dc.contributor.author Millet Roig, José es_ES
dc.contributor.author Castells, Francisco es_ES
dc.date.accessioned 2023-10-11T18:02:07Z
dc.date.available 2023-10-11T18:02:07Z
dc.date.issued 2022-06-30 es_ES
dc.identifier.issn 0967-3334 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198022
dc.description.abstract [EN] Objective: Detecting different cardiac diseases using a single or reduced number of leads is still challenging. This work aims to provide and validate an automated method able to classify ECG recordings. Performance using complete 12-lead systems, reduced lead sets, and single-lead ECGs is evaluated and compared. Approach: Seven different databases with 12-lead ECGs were provided during the PhysioNet/Computing in Cardiology Challenge 2021, where 88,253 annotated samples associated with none, one, or several cardiac conditions among 26 different classes were released for training, whereas 42,896 hidden samples were used for testing. After signal preprocessing, 81 features per ECG-lead were extracted, mainly based on heart rate variability, QRST patterns and spectral domain. Next, a One-vs-Rest classification approach made of independent binary classifiers for each cardiac condition was trained. This strategy allowed each ECG to be classified as belonging to none, one or several classes. For each class, a classification model among two binary Supervised Classifiers and one Hybrid Unsupervised-Supervised classification system was selected. Finally, we performed a 3-fold cross-validation to assess the system's performance. Main results: Our classifiers received scores of 0.39, 0.38, 0.39, 0.38, and 0.37 for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric (CM). Also, we obtained a mean G-score of 0.80, 0.78, 0.79, 0.79, 0.77 and 0.74 for the 12, 6, 4, 3, 2 and 1-lead subsets with the public training set during our 3-fold cross-validation. Significance: We proposed and tested a machine learning approach focused on flexibility for identifying multiple cardiac conditions using one or more ECG leads. Our minimal-lead approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it can also detect multiple and concurrent cardiac conditions. es_ES
dc.description.sponsorship This work was supported by PID2019-109547RB-I00 (National Research Program, Ministerio de Ciencia e Innovación, Spanish Government) and CIBERCV CB16/11/00486 (Instituto de Salud Carlos III). es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ECG es_ES
dc.subject Signal processing es_ES
dc.subject Feature extraction es_ES
dc.subject Feature selection es_ES
dc.subject Machine learning es_ES
dc.subject Classification es_ES
dc.subject Cardiac conditions detection es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-vs-rest classification strategy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1361-6579/ac72f5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109547RB-I00/ES/CUANTIFICACION DEL DETERIORO LOCAL DEL MIOCARDIO MEDIANTE CATETER MULTIELECTRODO GRID ALTA DENSIDAD. IDENTIFICACION DE METRICAS DEL SUSTRATO FIBROTICO RESPONSABLE DE ARRITMIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00486/ES/ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Jiménez-Serrano, S.; Rodrigo, M.; Calvo Saiz, CJ.; Millet Roig, J.; Castells, F. (2022). From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-vs-rest classification strategy. Physiological Measurement. 43(6):1-17. https://doi.org/10.1088/1361-6579/ac72f5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1361-6579/ac72f5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 35609610 es_ES
dc.relation.pasarela S\465773 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
upv.costeAPC 2952,4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem