- -

A comparison of Covid-19 early detection between convolutional neural networks and radiologists

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comparison of Covid-19 early detection between convolutional neural networks and radiologists

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Albiol Colomer, Alberto es_ES
dc.contributor.author Albiol, Francisco es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.contributor.author Plasencia-Martínez, Juana María es_ES
dc.contributor.author Blanco Barrio, Ana es_ES
dc.contributor.author García Santos, José M. es_ES
dc.contributor.author Tortajada, Salvador es_ES
dc.contributor.author González Montaño, Victoria M. es_ES
dc.contributor.author Rodríguez Godoy, Clara E. es_ES
dc.contributor.author Fernández Gómez, Saray es_ES
dc.contributor.author Oliver-Garcia, Elena es_ES
dc.contributor.author de la Iglesia Vayá, María es_ES
dc.contributor.author Márquez Pérez, Francisca L. es_ES
dc.contributor.author Rayo Madrid, Juan I. es_ES
dc.date.accessioned 2023-10-17T18:01:21Z
dc.date.available 2023-10-17T18:01:21Z
dc.date.issued 2022-07-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198247
dc.description.abstract [EN] Background The role of chest radiography in COVID-19 disease has changed since the beginning of the pandemic from a diagnostic tool when microbiological resources were scarce to a different one focused on detecting and monitoring COVID-19 lung involvement. Using chest radiographs, early detection of the disease is still helpful in resource-poor environments. However, the sensitivity of a chest radiograph for diagnosing COVID-19 is modest, even for expert radiologists. In this paper, the performance of a deep learning algorithm on the first clinical encounter is evaluated and compared with a group of radiologists with different years of experience. Methods The algorithm uses an ensemble of four deep convolutional networks, Ensemble4Covid, trained to detect COVID-19 on frontal chest radiographs. The algorithm was tested using images from the first clinical encounter of positive and negative cases. Its performance was compared with five radiologists on a smaller test subset of patients. The algorithm's performance was also validated using the public dataset COVIDx. Results Compared to the consensus of five radiologists, the Ensemble4Covid model achieved an AUC of 0.85, whereas the radiologists achieved an AUC of 0.71. Compared with other state-of-the-art models, the performance of a single model of our ensemble achieved nonsignificant differences in the public dataset COVIDx. Conclusion The results show that the use of images from the first clinical encounter significantly drops the detection performance of COVID-19. The performance of our Ensemble4Covid under these challenging conditions is considerably higher compared to a consensus of five radiologists. Artificial intelligence can be used for the fast diagnosis of COVID-19. es_ES
dc.description.sponsorship Project Chest screening for patients with COVID 19 (COV2000750 Special COVID19 resolution) funded by Instituto de Salud Carlos III. Project DIRAC (INNVA1/2020/42) funded by the Agencia Valenciana de la Innovacion, Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Insights into Imaging es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Deep learning es_ES
dc.subject Covid-19 es_ES
dc.subject Radiology es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A comparison of Covid-19 early detection between convolutional neural networks and radiologists es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13244-022-01250-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//COV2000750//Chest screening for patients with COVID 19/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNVA1%2F2020%2F42//DIRAC/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Albiol Colomer, A.; Albiol, F.; Paredes Palacios, R.; Plasencia-Martínez, JM.; Blanco Barrio, A.; García Santos, JM.; Tortajada, S.... (2022). A comparison of Covid-19 early detection between convolutional neural networks and radiologists. Insights into Imaging. 13(1):1-12. https://doi.org/10.1186/s13244-022-01250-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13244-022-01250-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1869-4101 es_ES
dc.identifier.pmid 35900673 es_ES
dc.identifier.pmcid PMC9330942 es_ES
dc.relation.pasarela S\481740 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder SGS INTERNATIONAL CERTIFICATION SERVICES IBERICA SA es_ES
dc.contributor.funder DREUE ELECTRIC, SL es_ES
dc.contributor.funder FERMAX ELECTRONICA S.A.U. es_ES
dc.description.references World Health Organization, Coronavirus Disease (Covid 19) (2020) https://www.who.int/health-topics/coronavirus#tab=tab_1. Accessed May 14, 2022 es_ES
dc.description.references Manabe YC, Sharfstein JS, Armstrong K (2020) The need for more and better testing for COVID-19. JAMA 324(21):2153–2154. https://doi.org/10.1001/JAMA.2020.21694 es_ES
dc.description.references Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z (2020) Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol 19(3):171–183. https://doi.org/10.1038/s41579-020-00461-z es_ES
dc.description.references Kovács A, Palásti P, Veréb D, Bozsik B, Palkó A, Kincses ZT (2021) The sensitivity and specificity of chest CT in the diagnosis of COVID-19. Eur Radiol 31(5):2819–2824. https://doi.org/10.1007/S00330-020-07347-X es_ES
dc.description.references Vancheri SG et al (2020) Radiographic findings in 240 patients with COVID-19 pneumonia: time-dependence after the onset of symptoms. Eur Radiol 30(11):6161–6169. https://doi.org/10.1007/S00330-020-06967-7 es_ES
dc.description.references Wong HYF et al (2020) Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 296(2):E72–E78. https://doi.org/10.1148/RADIOL.2020201160/ASSET/IMAGES/LARGE/RADIOL.2020201160.FIG6.JPEG es_ES
dc.description.references Cleverley J, Piper J, Jones MM (2020) The role of chest radiography in confirming covid-19 pneumonia. BMJ. https://doi.org/10.1136/BMJ.M2426 es_ES
dc.description.references Harmon SA et al (2020) Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat Commun 11(1):1–7. https://doi.org/10.1038/s41467-020-17971-2. es_ES
dc.description.references Zhang R et al (2021) Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: value of artificial intelligence. Radiology 298(2):E88–E97. https://doi.org/10.1148/RADIOL.2020202944/ASSET/IMAGES/LARGE/RADIOL.2020202944.TBL4.JPEG es_ES
dc.description.references Wehbe RM et al (2021) DeepCOVID-XR: an artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large U.S. Clinical data set. Radiology 299(1):E167–E176. https://doi.org/10.1148/RADIOL.2020203511/ASSET/IMAGES/LARGE/RADIOL.2020203511.FIG6C.JPEG es_ES
dc.description.references Kanne JP et al (2021) COVID-19 imaging: what we know now and what remains unknown. Radiology 299(3):E262–E279. https://doi.org/10.1148/RADIOL.2021204522/ASSET/IMAGES/LARGE/RADIOL.2021204522.FIG8C.JPEG es_ES
dc.description.references Wang L, Lin ZQ, Wong A (2020) COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-76550-z es_ES
dc.description.references Oh Y, Park S, Ye JC (2020) Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging 39(8):2688–2700. https://doi.org/10.1109/TMI.2020.2993291 es_ES
dc.description.references Xiao N et al (2021) Chest radiograph at admission predicts early intubation among inpatient COVID-19 patients. Eur Radiol 31(5):2825–2832. https://doi.org/10.1007/s00330-020-07354-y es_ES
dc.description.references Balbi M et al (2021) Chest X-ray for predicting mortality and the need for ventilatory support in COVID-19 patients presenting to the emergency department. Eur Radiol 31(4):1999–2012. https://doi.org/10.1007/s00330-020-07270-1 es_ES
dc.description.references Murphy K et al (2020) COVID-19 on chest radiographs: a multireader evaluation of an artificial intelligence system. Radiology 296(3):E166–E172. https://doi.org/10.1148/RADIOL.2020201874 es_ES
dc.description.references Mongan J, Moy L, Kahn CE (2020) Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2(2):e200029. https://doi.org/10.1148/RYAI.2020200029/ASSET/IMAGES/LARGE/RYAI.2020200029.TBL1.JPEG es_ES
dc.description.references Roberts M et al (2021) Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 3(3):199–217. https://doi.org/10.1038/s42256-021-00307-0 es_ES
dc.description.references de la Iglesia Vayá M et al (2021) BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients | IEEE DataPort. https://doi.org/10.21227/w3aw-rv39 es_ES
dc.description.references de la Iglesia Vayá M et al (2021) BIMCV COVID-19-: a large annotated dataset of RX and CT images from COVID-19 patients | IEEE DataPort. https://doi.org/10.21227/m4j2-ap59 es_ES
dc.description.references Caliendo AM, Hanson KE (2022) COVID-19: diagnosis—uptodate. https://www.uptodate.com/contents/covid-19-diagnosis. Accessed May 14 2022 es_ES
dc.description.references Haitao T et al (2020) COVID-19 and sex differences: mechanisms and biomarkers. Mayo Clin Proc 95(10):2189–2203. https://doi.org/10.1016/J.MAYOCP.2020.07.024 es_ES
dc.description.references Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191 es_ES
dc.description.references Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L ImageNet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, Mar. 2009, pp 248–255. https://doi.org/10.1109/CVPR.2009.5206848 es_ES
dc.description.references He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol. 2016-December, pp 770–778. https://doi.org/10.1109/CVPR.2016.90 es_ES
dc.description.references Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR), Jul. 2017, vol. 2017-January, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243 es_ES
dc.description.references Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: IEEE conference on computer vision and pattern recognition (CVPR), Jun. 2016, vol. 2016-December, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308 es_ES
dc.description.references Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Proceedings of the thirty-first AAAI conference on artificial intelligence, 2017, pp 4278–4284. https://doi.org/10.48550/ARXIV.1602.07261 es_ES
dc.description.references Lin M, Chen Q, Yan S (2013) Network in network. In: International conference on learning representations, ICLR, Dec. 2013. https://doi.org/10.48550/arxiv.1312.4400 es_ES
dc.description.references Chollet F et al (2015) Keras. https://keras.io. Accessed May 14 2022 es_ES
dc.description.references Cubuk ED, Zoph B, Shlens J, Le QV (2020) RandAugment: practical automated data augmentation with a reduced search space. In: IEEE computer society conference on computer vision and pattern recognition workshops, Sep. 2019, vol. 2020-June, pp 3008–3017. https://doi.org/10.48550/arxiv.1909.13719 es_ES
dc.description.references The British Society of Thoracic Imaging, “COVID-19 BSTI Reporting templates.” https://www.bsti.org.uk/covid-19-resources/covid-19-bsti-reporting-templates/. Accessed May 14 2022 es_ES
dc.description.references Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378–382. https://doi.org/10.1037/H0031619 es_ES
dc.description.references Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54–75. https://doi.org/10.1214/ss/1177013815 es_ES
dc.description.references Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35. https://doi.org/10.1002/1097-0142 es_ES
dc.description.references Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. https://doi.org/10.1007/s11263-019-01228-7 es_ES
dc.description.references World Health Organization, “Contact tracing in the context of COVID-19: interim guidance, 10 May 2020 (2020). https://apps.who.int/iris/handle/10665/332049 (accessed May 14, 2022). es_ES
dc.description.references Rubin GD et al (2020) The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society. Radiology 296(1):172–180. https://doi.org/10.1148/RADIOL.2020201365/ASSET/IMAGES/LARGE/RADIOL.2020201365.TBL2.JPEG es_ES
dc.description.references Lee C et al (2019) ACR appropriateness criteria® acute respiratory illness in immunocompromised patients. J Am Coll Radiol 16(11S):S331–S339. https://doi.org/10.1016/J.JACR.2019.05.019 es_ES
dc.description.references Pecoraro V, Negro A, Pirotti T, Trenti T (2022) Estimate false-negative RT-PCR rates for SARS-CoV-2. A systematic review and meta-analysis. Eur J Clin Investig 52(2):e13706. https://doi.org/10.1111/ECI.13706 es_ES
dc.description.references World Health Organization, “Classifsication of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern (2021). https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern. Accessed May 14, 2022 es_ES
dc.description.references Hussain A, Mahawar K, Xia Z, Yang W, EL-Hasani S (2020) Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract 14(4):295–300. https://doi.org/10.1016/J.ORCP.2020.07.002 es_ES
dc.description.references Palaiodimos L et al (2020) Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. https://doi.org/10.1016/J.METABOL.2020.154262 es_ES
dc.description.references Castiglioni I et al (2021) Machine learning applied on chest x-ray can aid in the diagnosis of COVID-19: a first experience from Lombardy, Italy. Eur Radiol Exp 5(1):1–10. https://doi.org/10.1186/S41747-020-00203-Z/FIGURES/3 es_ES
dc.description.references Summers RM (2021) Artificial intelligence of COVID-19 imaging: a hammer in search of a nail. Radiology 298(3):E169–E171. https://doi.org/10.1148/RADIOL.2020204226 es_ES
upv.costeAPC 2840 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem