Mostrar el registro sencillo del ítem
dc.contributor.author | Albiol Colomer, Alberto | es_ES |
dc.contributor.author | Albiol, Francisco | es_ES |
dc.contributor.author | Paredes Palacios, Roberto | es_ES |
dc.contributor.author | Plasencia-Martínez, Juana María | es_ES |
dc.contributor.author | Blanco Barrio, Ana | es_ES |
dc.contributor.author | García Santos, José M. | es_ES |
dc.contributor.author | Tortajada, Salvador | es_ES |
dc.contributor.author | González Montaño, Victoria M. | es_ES |
dc.contributor.author | Rodríguez Godoy, Clara E. | es_ES |
dc.contributor.author | Fernández Gómez, Saray | es_ES |
dc.contributor.author | Oliver-Garcia, Elena | es_ES |
dc.contributor.author | de la Iglesia Vayá, María | es_ES |
dc.contributor.author | Márquez Pérez, Francisca L. | es_ES |
dc.contributor.author | Rayo Madrid, Juan I. | es_ES |
dc.date.accessioned | 2023-10-17T18:01:21Z | |
dc.date.available | 2023-10-17T18:01:21Z | |
dc.date.issued | 2022-07-28 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198247 | |
dc.description.abstract | [EN] Background The role of chest radiography in COVID-19 disease has changed since the beginning of the pandemic from a diagnostic tool when microbiological resources were scarce to a different one focused on detecting and monitoring COVID-19 lung involvement. Using chest radiographs, early detection of the disease is still helpful in resource-poor environments. However, the sensitivity of a chest radiograph for diagnosing COVID-19 is modest, even for expert radiologists. In this paper, the performance of a deep learning algorithm on the first clinical encounter is evaluated and compared with a group of radiologists with different years of experience. Methods The algorithm uses an ensemble of four deep convolutional networks, Ensemble4Covid, trained to detect COVID-19 on frontal chest radiographs. The algorithm was tested using images from the first clinical encounter of positive and negative cases. Its performance was compared with five radiologists on a smaller test subset of patients. The algorithm's performance was also validated using the public dataset COVIDx. Results Compared to the consensus of five radiologists, the Ensemble4Covid model achieved an AUC of 0.85, whereas the radiologists achieved an AUC of 0.71. Compared with other state-of-the-art models, the performance of a single model of our ensemble achieved nonsignificant differences in the public dataset COVIDx. Conclusion The results show that the use of images from the first clinical encounter significantly drops the detection performance of COVID-19. The performance of our Ensemble4Covid under these challenging conditions is considerably higher compared to a consensus of five radiologists. Artificial intelligence can be used for the fast diagnosis of COVID-19. | es_ES |
dc.description.sponsorship | Project Chest screening for patients with COVID 19 (COV2000750 Special COVID19 resolution) funded by Instituto de Salud Carlos III. Project DIRAC (INNVA1/2020/42) funded by the Agencia Valenciana de la Innovacion, Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SpringerOpen | es_ES |
dc.relation.ispartof | Insights into Imaging | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Covid-19 | es_ES |
dc.subject | Radiology | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | A comparison of Covid-19 early detection between convolutional neural networks and radiologists | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13244-022-01250-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//COV2000750//Chest screening for patients with COVID 19/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNVA1%2F2020%2F42//DIRAC/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Albiol Colomer, A.; Albiol, F.; Paredes Palacios, R.; Plasencia-Martínez, JM.; Blanco Barrio, A.; García Santos, JM.; Tortajada, S.... (2022). A comparison of Covid-19 early detection between convolutional neural networks and radiologists. Insights into Imaging. 13(1):1-12. https://doi.org/10.1186/s13244-022-01250-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13244-022-01250-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1869-4101 | es_ES |
dc.identifier.pmid | 35900673 | es_ES |
dc.identifier.pmcid | PMC9330942 | es_ES |
dc.relation.pasarela | S\481740 | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | SGS INTERNATIONAL CERTIFICATION SERVICES IBERICA SA | es_ES |
dc.contributor.funder | DREUE ELECTRIC, SL | es_ES |
dc.contributor.funder | FERMAX ELECTRONICA S.A.U. | es_ES |
dc.description.references | World Health Organization, Coronavirus Disease (Covid 19) (2020) https://www.who.int/health-topics/coronavirus#tab=tab_1. Accessed May 14, 2022 | es_ES |
dc.description.references | Manabe YC, Sharfstein JS, Armstrong K (2020) The need for more and better testing for COVID-19. JAMA 324(21):2153–2154. https://doi.org/10.1001/JAMA.2020.21694 | es_ES |
dc.description.references | Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z (2020) Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol 19(3):171–183. https://doi.org/10.1038/s41579-020-00461-z | es_ES |
dc.description.references | Kovács A, Palásti P, Veréb D, Bozsik B, Palkó A, Kincses ZT (2021) The sensitivity and specificity of chest CT in the diagnosis of COVID-19. Eur Radiol 31(5):2819–2824. https://doi.org/10.1007/S00330-020-07347-X | es_ES |
dc.description.references | Vancheri SG et al (2020) Radiographic findings in 240 patients with COVID-19 pneumonia: time-dependence after the onset of symptoms. Eur Radiol 30(11):6161–6169. https://doi.org/10.1007/S00330-020-06967-7 | es_ES |
dc.description.references | Wong HYF et al (2020) Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 296(2):E72–E78. https://doi.org/10.1148/RADIOL.2020201160/ASSET/IMAGES/LARGE/RADIOL.2020201160.FIG6.JPEG | es_ES |
dc.description.references | Cleverley J, Piper J, Jones MM (2020) The role of chest radiography in confirming covid-19 pneumonia. BMJ. https://doi.org/10.1136/BMJ.M2426 | es_ES |
dc.description.references | Harmon SA et al (2020) Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat Commun 11(1):1–7. https://doi.org/10.1038/s41467-020-17971-2. | es_ES |
dc.description.references | Zhang R et al (2021) Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: value of artificial intelligence. Radiology 298(2):E88–E97. https://doi.org/10.1148/RADIOL.2020202944/ASSET/IMAGES/LARGE/RADIOL.2020202944.TBL4.JPEG | es_ES |
dc.description.references | Wehbe RM et al (2021) DeepCOVID-XR: an artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large U.S. Clinical data set. Radiology 299(1):E167–E176. https://doi.org/10.1148/RADIOL.2020203511/ASSET/IMAGES/LARGE/RADIOL.2020203511.FIG6C.JPEG | es_ES |
dc.description.references | Kanne JP et al (2021) COVID-19 imaging: what we know now and what remains unknown. Radiology 299(3):E262–E279. https://doi.org/10.1148/RADIOL.2021204522/ASSET/IMAGES/LARGE/RADIOL.2021204522.FIG8C.JPEG | es_ES |
dc.description.references | Wang L, Lin ZQ, Wong A (2020) COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-76550-z | es_ES |
dc.description.references | Oh Y, Park S, Ye JC (2020) Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging 39(8):2688–2700. https://doi.org/10.1109/TMI.2020.2993291 | es_ES |
dc.description.references | Xiao N et al (2021) Chest radiograph at admission predicts early intubation among inpatient COVID-19 patients. Eur Radiol 31(5):2825–2832. https://doi.org/10.1007/s00330-020-07354-y | es_ES |
dc.description.references | Balbi M et al (2021) Chest X-ray for predicting mortality and the need for ventilatory support in COVID-19 patients presenting to the emergency department. Eur Radiol 31(4):1999–2012. https://doi.org/10.1007/s00330-020-07270-1 | es_ES |
dc.description.references | Murphy K et al (2020) COVID-19 on chest radiographs: a multireader evaluation of an artificial intelligence system. Radiology 296(3):E166–E172. https://doi.org/10.1148/RADIOL.2020201874 | es_ES |
dc.description.references | Mongan J, Moy L, Kahn CE (2020) Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2(2):e200029. https://doi.org/10.1148/RYAI.2020200029/ASSET/IMAGES/LARGE/RYAI.2020200029.TBL1.JPEG | es_ES |
dc.description.references | Roberts M et al (2021) Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 3(3):199–217. https://doi.org/10.1038/s42256-021-00307-0 | es_ES |
dc.description.references | de la Iglesia Vayá M et al (2021) BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients | IEEE DataPort. https://doi.org/10.21227/w3aw-rv39 | es_ES |
dc.description.references | de la Iglesia Vayá M et al (2021) BIMCV COVID-19-: a large annotated dataset of RX and CT images from COVID-19 patients | IEEE DataPort. https://doi.org/10.21227/m4j2-ap59 | es_ES |
dc.description.references | Caliendo AM, Hanson KE (2022) COVID-19: diagnosis—uptodate. https://www.uptodate.com/contents/covid-19-diagnosis. Accessed May 14 2022 | es_ES |
dc.description.references | Haitao T et al (2020) COVID-19 and sex differences: mechanisms and biomarkers. Mayo Clin Proc 95(10):2189–2203. https://doi.org/10.1016/J.MAYOCP.2020.07.024 | es_ES |
dc.description.references | Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191 | es_ES |
dc.description.references | Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L ImageNet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, Mar. 2009, pp 248–255. https://doi.org/10.1109/CVPR.2009.5206848 | es_ES |
dc.description.references | He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol. 2016-December, pp 770–778. https://doi.org/10.1109/CVPR.2016.90 | es_ES |
dc.description.references | Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR), Jul. 2017, vol. 2017-January, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243 | es_ES |
dc.description.references | Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: IEEE conference on computer vision and pattern recognition (CVPR), Jun. 2016, vol. 2016-December, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308 | es_ES |
dc.description.references | Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Proceedings of the thirty-first AAAI conference on artificial intelligence, 2017, pp 4278–4284. https://doi.org/10.48550/ARXIV.1602.07261 | es_ES |
dc.description.references | Lin M, Chen Q, Yan S (2013) Network in network. In: International conference on learning representations, ICLR, Dec. 2013. https://doi.org/10.48550/arxiv.1312.4400 | es_ES |
dc.description.references | Chollet F et al (2015) Keras. https://keras.io. Accessed May 14 2022 | es_ES |
dc.description.references | Cubuk ED, Zoph B, Shlens J, Le QV (2020) RandAugment: practical automated data augmentation with a reduced search space. In: IEEE computer society conference on computer vision and pattern recognition workshops, Sep. 2019, vol. 2020-June, pp 3008–3017. https://doi.org/10.48550/arxiv.1909.13719 | es_ES |
dc.description.references | The British Society of Thoracic Imaging, “COVID-19 BSTI Reporting templates.” https://www.bsti.org.uk/covid-19-resources/covid-19-bsti-reporting-templates/. Accessed May 14 2022 | es_ES |
dc.description.references | Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378–382. https://doi.org/10.1037/H0031619 | es_ES |
dc.description.references | Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54–75. https://doi.org/10.1214/ss/1177013815 | es_ES |
dc.description.references | Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35. https://doi.org/10.1002/1097-0142 | es_ES |
dc.description.references | Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. https://doi.org/10.1007/s11263-019-01228-7 | es_ES |
dc.description.references | World Health Organization, “Contact tracing in the context of COVID-19: interim guidance, 10 May 2020 (2020). https://apps.who.int/iris/handle/10665/332049 (accessed May 14, 2022). | es_ES |
dc.description.references | Rubin GD et al (2020) The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society. Radiology 296(1):172–180. https://doi.org/10.1148/RADIOL.2020201365/ASSET/IMAGES/LARGE/RADIOL.2020201365.TBL2.JPEG | es_ES |
dc.description.references | Lee C et al (2019) ACR appropriateness criteria® acute respiratory illness in immunocompromised patients. J Am Coll Radiol 16(11S):S331–S339. https://doi.org/10.1016/J.JACR.2019.05.019 | es_ES |
dc.description.references | Pecoraro V, Negro A, Pirotti T, Trenti T (2022) Estimate false-negative RT-PCR rates for SARS-CoV-2. A systematic review and meta-analysis. Eur J Clin Investig 52(2):e13706. https://doi.org/10.1111/ECI.13706 | es_ES |
dc.description.references | World Health Organization, “Classifsication of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern (2021). https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern. Accessed May 14, 2022 | es_ES |
dc.description.references | Hussain A, Mahawar K, Xia Z, Yang W, EL-Hasani S (2020) Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract 14(4):295–300. https://doi.org/10.1016/J.ORCP.2020.07.002 | es_ES |
dc.description.references | Palaiodimos L et al (2020) Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. https://doi.org/10.1016/J.METABOL.2020.154262 | es_ES |
dc.description.references | Castiglioni I et al (2021) Machine learning applied on chest x-ray can aid in the diagnosis of COVID-19: a first experience from Lombardy, Italy. Eur Radiol Exp 5(1):1–10. https://doi.org/10.1186/S41747-020-00203-Z/FIGURES/3 | es_ES |
dc.description.references | Summers RM (2021) Artificial intelligence of COVID-19 imaging: a hammer in search of a nail. Radiology 298(3):E169–E171. https://doi.org/10.1148/RADIOL.2020204226 | es_ES |
upv.costeAPC | 2840 | es_ES |