- -

Pterin lysine photoadduct: a potential candidate for photoallergy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pterin lysine photoadduct: a potential candidate for photoallergy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Farías, Jesuan J. es_ES
dc.contributor.author Lizondo-Aranda, Paloma es_ES
dc.contributor.author Thomas, Andrés H. es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.contributor.author Dántola, M. Laura es_ES
dc.date.accessioned 2023-10-19T18:01:29Z
dc.date.available 2023-10-19T18:01:29Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 1474-905X es_ES
dc.identifier.uri http://hdl.handle.net/10251/198409
dc.description.abstract [EN] Photoallergy is a photosensitivity disorder associated with a modified ability of the skin to react to the combined effect of drugs and sunlight. It has been attributed to the covalent conjugation of proteins with a photosensitizer, yielding modified macromolecules that can act as antigen provoking the immune system response. The potential role of some endogenous compounds as photoallergens has not been fully established. It has been previously proposed that pterins, which are endogenous photosensitizers present in human skin under pathological conditions, are able to covalently bind to proteins. Here, we evaluated the capability of pterin (Ptr) to form photoadducts with free Lysine (Lys) and poly-L-lysine (poly-Lys). The findings obtained using chromatographic and spectroscopic tools, confirm the formation of photoadducts of Ptr with Lys residues. With poly-Lys the resulting adduct retains the spectroscopic properties of the photosensitizer, suggesting that the aromatic Ptr structure is conserved. On the other hand, the photoproduct formed with free Lys does not behave like Ptr, which suggests that if this product is a photoadduct, a chemical modification may have occurred during the photochemical reaction that alters the pterin moiety. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Photochemical & Photobiological Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pterin es_ES
dc.subject Lysine es_ES
dc.subject Poly-lysine es_ES
dc.subject Photobinding es_ES
dc.subject Photoallergy es_ES
dc.subject UV-A radiation es_ES
dc.title Pterin lysine photoadduct: a potential candidate for photoallergy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s43630-022-00248-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096684-B-I00/ES/REPARACION DEL ADN POR PROCESOS MULTIFOTONICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Farías, JJ.; Lizondo-Aranda, P.; Thomas, AH.; Lhiaubet, VL.; Dántola, ML. (2022). Pterin lysine photoadduct: a potential candidate for photoallergy. Photochemical & Photobiological Sciences. 21(9):1647-1657. https://doi.org/10.1007/s43630-022-00248-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s43630-022-00248-6 es_ES
dc.description.upvformatpinicio 1647 es_ES
dc.description.upvformatpfin 1657 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 35666464 es_ES
dc.relation.pasarela S\485660 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Smith, K. C. (1989). The science of photobiology. Plenum Press. es_ES
dc.description.references Miranda, M. A., Castell, J. V., Hernández, D., Gomez-Lechón, M. J., Boscá, F., Morera, I. M., & Sarabia, Z. (1998). Drug-photosensitized protein modification: Identification of the reactive sites and elucidation of the reaction mechanism with tiaprofenic acid/albumin as model system. Chemical Research in Toxicology, 11(3), 172–177. https://doi.org/10.1021/tx970082d es_ES
dc.description.references Smith, C. K., & Hotchkiss, S. A. M. (2001). Allergic contact dermatitis—Chemical and metabolic mechanisms. Taylor & Francis. es_ES
dc.description.references Harber, L. C., & Baer, R. (1972). Pathogenic mechanisms of drug-induced photosensitivity. The Journal of Investigative Dermatology, 58, 327–342. https://doi.org/10.1111/1523-1747.ep12540517 es_ES
dc.description.references Honari, G. (2014). Photoallergy. Reviews on Environmental Health, 29, 233–242. https://doi.org/10.1515/reveh-2014-0067 es_ES
dc.description.references Glatz, M., & Hofbauer, G. F. L. (2012). Phototoxic and photoallergic cutaneous drug reactions. Chemical Immunology and Allergy, 97, 167–179. https://doi.org/10.1159/000335630 es_ES
dc.description.references Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to triflusal: Formation of a photoadduct with ubiquitin demonstrated by photophysical and proteomic techniques. Frontiers in Pharmacology, 7, 1–8. https://doi.org/10.3389/fphar.2016.00277 es_ES
dc.description.references Pfleiderer W. (1993). In J. E. Ayling, M. G. Nair, & C. M. Baugh (Eds.), Chemistry and biology of pteridines and folates (pp. 1–16). Plenum Press. es_ES
dc.description.references Kappock, T. J., & Caradonna, J. P. (1996). Pterin-dependent amino acid hydroxylases. Chemical Reviews, 96, 2659–2756. https://doi.org/10.1021/cr9402034 es_ES
dc.description.references Ziegler, I. (1990). Production of pteridines during hematopoiesis and T-lymphocyte proliferation: Potential participation in the control of cytokine signal transmission. Medicinal Research Reviews, 10, 95–114. https://doi.org/10.1002/med.2610100104 es_ES
dc.description.references Schallreuter, K. U., Wood, J. M., Pittelkow, M. R., Gütlich, M., Lemke, K. R., Rödl, W., Swanson, N. N., Hitzemann, K., & Ziegler, I. (1994). Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science, 263, 1444–1446. https://doi.org/10.1126/science.8128228 es_ES
dc.description.references Glassman, S. J. (2010). Vitiligo, reactive oxygen species and T-cells. Clinical Science, 120, 99–120. https://doi.org/10.1042/CS20090603 es_ES
dc.description.references Schallreuter, K. U., Moore, J., Wood, J. M., Beazley, W. D., Peters, E. M., Marles, L. K., Behrens-Williams, S. C., Dummer, R., Blau, N., & Thöny, B. (2001). Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: Identification of a general mechanism in regulation of all 6BH4-dependent processes? The Journal of Investigative Dermatology, 116, 167–174. https://doi.org/10.1046/j.1523-1747.2001.00220.x es_ES
dc.description.references Rokos, H., Beazley, W. D., & Schallreuter, K. U. (2002). Oxidative stress in vitiligo: Photo- oxidation of pterins produces H2O2 and pterin-6-carboxylic acid. Biochemical and Biophysical Research Communications, 292, 805–811. https://doi.org/10.1006/bbrc.2002.6727 es_ES
dc.description.references Thomas, A. H., Catalá, A., & Vignoni, M. (2016). Soybean phosphatidylcholine liposomes as model membranes to study lipid peroxidation photoinduced by pterin. Biochimica et Biophysica Acta, Biomembranes, 1858, 139–145. https://doi.org/10.1016/j.bbamem.2015.11.002 es_ES
dc.description.references Serrano, M. P., Estébanez, S., Vignoni, M., Lorente, C., Vicendo, P., Oliveros, E., & Thomas, A. H. (2017). Photosensitized oxidation of 2’-deoxyguanosine 5’-monophosphate: Mechanism of the competitive reactions and product characterization. New Journal of Chemistry, 41, 7273–7282. https://doi.org/10.1039/C7NJ00739F es_ES
dc.description.references Dántola, M. L., Reid, L. O., Castaño, C., Lorente, C., Oliveros, E., & Thomas, A. H. (2017). Photosensitization of peptides and proteins by pterin derivatives. Pteridines, 28, 105–114. https://doi.org/10.1515/pterid-2017-0013 es_ES
dc.description.references Vignoni, M., Urrutia, M. N., Junqueira, H. C., Greer, A., Reis, A., Baptista, M. S., Itri, R., & Thomas, A. H. (2018). Photooxidation of unilamellar vesicles by a lipophilic pterin: Deciphering biomembrane photodamage. Langmuir, 34, 15578–15586. https://doi.org/10.1021/acs.langmuir.8b03302 es_ES
dc.description.references Lorente, C., Serrano, M. P., Vignoni, M., Dántola, M. L., & Thomas, A. H. (2021). A model to understand type I oxidations of biomolecules photosensitized by pterins. Journal of Photochemistry and Photobiology, 7, 100045. https://doi.org/10.1016/j.jpap.2021.100045 es_ES
dc.description.references Reid, L. O., Roman, E. A., Thomas, A. H., & Dántola, M. L. (2016). Photooxidation of tryptophan and tyrosine residues in human serum albumin sensitized by pterin: A model for globular protein photodamage in skin. Biochemistry, 55, 4777–4786. https://doi.org/10.1021/acs.biochem.6b00420 es_ES
dc.description.references Reid, L. O., Dántola, M. L., Petroselli, G., Erra-Balsells, R., Miranda, M. A., Lhiaubet-Vallet, V., & Thomas, A. H. (2019). Chemical modifications of globular proteins phototriggered by an endogenous photosensitizer. Chemical Research in Toxicology, 32, 2250–2259. https://doi.org/10.1021/acs.chemrestox.9b00286 es_ES
dc.description.references Braslavsky, S. E. (2007). Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Applied Chemistry, 79, 293–465. https://doi.org/10.1351/pac200779030293 es_ES
dc.description.references Kuhn, H. J., Braslavsky, S. E., & Schmidt, R. (2004). Chemical actinometry (IUPAC technical report). Pure and Applied Chemistry, 76, 2105–2146. https://doi.org/10.1351/pac200476122105 es_ES
dc.description.references Serrano, M. P., Vignoni, M., Dántola, M. L., Oliveros, E., Lorente, C., & Thomas, A. H. (2011). Emission properties of dihydropterins in aqueous solutions. Physical Chemistry Chemical Physics: PCCP, 13, 7419–7425. https://doi.org/10.1039/C0CP02912B es_ES
dc.description.references Lorente, C., & Thomas, A. H. (2006). Photophysics and photochemistry of pterins in aqueous solution. Accounts of Chemical Research, 39, 395–402. https://doi.org/10.1021/ar050151c es_ES
dc.description.references Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic addition of the ε-amino group of lysine to a triflusal metabolite as a mechanistic key to photoallergy mediated by the parent drug. ChemMedChem, 4, 1196–1202. https://doi.org/10.1002/cmdc.200900066 es_ES
dc.description.references Saito, I., Sugiyama, H., & Matsuura, T. (1983). Isolation and characterization of a thymine-lysine adduct in UV-irradiated nuclei. The role of thymine-lysine photoaddition in photo-cross-linking of proteins to DNA. Journal of the American Chemical Society, 105, 6989–6991. https://doi.org/10.1021/ja00361a056 es_ES
dc.description.references Morin, B., & Cadet, J. (1995). Chemical aspects of the benzophenone-photosensitized formation of two lysine—2’-deoxyguanosine cross-links. Journal of the American Chemical Society, 117, 12408–12415. https://doi.org/10.1021/ja00155a005 es_ES
dc.description.references Saito, I., & Matsuura, T. (1985). Chemical aspects of UV-induced cross-linking of proteins to nucleic acids. photoreactions with lysine and tryptophan. Accounts of Chemical Research, 18, 134–141. es_ES
dc.description.references Thomas, A. H., Lorente, C., Capparelli, A. L., Pokhrel, M. R., Braun, A. M., & Oliveros, E. (2002). Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solutions: pH effects. Photochemical & Photobiological Sciences, 1, 421–426. https://doi.org/10.1039/B202114E es_ES
dc.description.references Serrano, M. P., Lorente, C., Borsarelli, C. D., & Thomas, A. H. (2015). Unravelling the degradation mechanism of purine nucleotides photosensitized by pterins: The role of charge-transfer steps. ChemPhysChem, 16, 2244–2252. https://doi.org/10.1002/cphc.201500219 es_ES
dc.description.references Castaño, C., Serrano, M. P., Lorente, C., Borsarelli, C. D., & Thomas, A. H. (2019). Quenching of the singlet and triplet excited states of pterin by amino acids. Photochemistry and Photobiology, 95, 220–226. https://doi.org/10.1111/php.13046 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem