- -

Geometry of the modelled freshwater/salt-water interface under variable-density-driven flow (Petrola Lake, SE Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geometry of the modelled freshwater/salt-water interface under variable-density-driven flow (Petrola Lake, SE Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanz, D. es_ES
dc.contributor.author Valiente, N. es_ES
dc.contributor.author Dountcheva, I. es_ES
dc.contributor.author Muñoz-Martín, A. es_ES
dc.contributor.author Cassiraga, Eduardo Fabián es_ES
dc.contributor.author Gómez-Alday, J. J. es_ES
dc.date.accessioned 2023-10-19T18:02:17Z
dc.date.available 2023-10-19T18:02:17Z
dc.date.issued 2022-05 es_ES
dc.identifier.issn 1431-2174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198427
dc.description.abstract [EN] Petrola Lake in southeast Spain is one of the most representative examples of hypersaline wetlands in southern Europe. The rich ecosystem and environmental importance of this lake are closely associated with the hydrogeological behaviour of the system. The wetland is fed by the underlying aquifer with relatively fresh groundwater-1 g L-1 of total dissolved solids (TDS)-with a centripetal direction towards the wetland. In addition, the high evaporation rates of the region promote an increase in the concentration of salts in the lake water, occasionally higher than 80 g L-1 TDS. The density difference between the superficial lake water and the regional groundwater can reach up to 0.25 g cm(-3), causing gravitational instability and density-driven flow (DDF) under the lake bottom. The objective of this study was to gain an understanding of the geometry of the freshwater-saltwater interface by means of two-dimensional mathematical modelling and geophysical-resistivity-profile surveys. The magnitude and direction of mixed convective flows, generated by DDF, support the hypothesis that the autochthonous reactive organic matter produced in the lake by biomass can be transported effectively towards the freshwater-saltwater interface areas (e.g. springs in the lake edge), where previous research described biogeochemical processes of natural attenuation of nitrate pollution. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study was financially supported by a PhD grant to Nicolas Valiente Parra (BES-2012-052256) from the Spanish government, the PEIC-2014-004-P project from the Castilla-La Mancha regional government, and projects CICYT CGL-2008-06373-C03-01 and CICYT CGL2011-29975-C04-02 research projects CGL2017-87216-C4-2-R from the National Research Program I+D+i (FEDER/Ministerio de Ciencia, Investigacion y Universidades), SBPLY/17/180501/000296 from the National Research Program I+D+i of the Junta de Comunidades de Castilla-La Mancha, and by the Regional Government of Madrid through the CARESOIL project (S2018/EMT-4317). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Hydrogeology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Salt-water/fresh-water relations es_ES
dc.subject Wetlands es_ES
dc.subject Density-driven flow es_ES
dc.subject SEAWAT es_ES
dc.subject Spain es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Geometry of the modelled freshwater/salt-water interface under variable-density-driven flow (Petrola Lake, SE Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10040-022-02456-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-87216-C4-2-R/ES/COEXISTENCIA ESPACIO-TEMPORAL DE PROCESOS DE ATENUACION NATURAL DE CONTAMINANTES ORGANICOS E INORGANICOS. IMPLICACIONES PARA LA GESTION DE RECURSOS HIDRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UCM//S2018%2FEMT-4317//Caracterización, remediación, modelización y evaluación del riesgo de la contaminación de suelos y aguas subterráneas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2008-06373-C03-01/ES/GROUND WATER POLLUTION FROM AGRICULTURAL AND INDUSTRIAL SOURCES: CONTAMINANT FATE, NATURAL AND INDUCED ATTENUATION, AND VULNERABILITY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PEIC-2014-004-P//Atenuación de la contaminación por nitrato en acuíferos regionales conectados a sistemas lagunares salinos. ANNA2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2012-052256/ES/BES-2012-052256/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000296/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//CGL2011-29975-C04-02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Sanz, D.; Valiente, N.; Dountcheva, I.; Muñoz-Martín, A.; Cassiraga, EF.; Gómez-Alday, JJ. (2022). Geometry of the modelled freshwater/salt-water interface under variable-density-driven flow (Petrola Lake, SE Spain). Hydrogeology Journal. 30(3):975-988. https://doi.org/10.1007/s10040-022-02456-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10040-022-02456-x es_ES
dc.description.upvformatpinicio 975 es_ES
dc.description.upvformatpfin 988 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\462273 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universidad Complutense de Madrid es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic, Boca Raton, FL es_ES
dc.description.references Archie GE (1942) Electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–61. https://doi.org/10.2118/942054-G es_ES
dc.description.references Bauer P, Held RJ, Zimmermann S, Linn F, Kinzelbach W (2006) Coupled flow and salinity transport modelling in semi-arid environments: the Shashe River Valley, Botswana. J Hydrol 316(1–4):163–183. https://doi.org/10.1016/j.jhydrol.2005.04.018 es_ES
dc.description.references Bentley LR, Hayashi M, Zimmerman EP, Holmden C, Kelley LI (2016) Geologically controlled bi-directional exchange of groundwater with a hypersaline lake in the Canadian prairies. Hydrogeol J 24(4):877–892. https://doi.org/10.1007/s10040-016-1368-0 es_ES
dc.description.references Camacho A, Borja C, Valero-Garcés B, Sahuquillo M, Cirujano S, Soria JM, Rico E, de la Hera Á, Santamans AC, de Domingo AG, Chicote Á, Gosálvez RU (2009) Aguas continentales retenidas. Ecosistemas leníticos de interior. Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. [Retained inland waters. Lenitic inland ecosystems. Preliminary ecological bases for the conservation of habitat types of community interest in Spain]. Ministerio de Medio Ambiente, y Medio Rural y Marino. http://www.jolube.es/habitat_espana/documentos/31.pdf. Accessed 17 June 2021 es_ES
dc.description.references Cartwright I, Hall S, Tweed S, Leblanc M (2009) Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in Southeast Australia. Hydrogeol J 17(8):1991. https://doi.org/10.1007/s10040-009- es_ES
dc.description.references Centro Nacional de Información Geográfica (CNIG) (2015) Digital elevation model data. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp. Accessed 17 June 2021 es_ES
dc.description.references Confederación Hidrográfica del Segura (CHS) (2010) Determinación de las necesidades ecológicas de agua en lagos y humedales, Laguna de Pétrola [Determination of ecological water needs in lakes and wetlands, Pétrola Lake]. BDHS:L9 0492–5, CHS, Catedral, Spain, 55 pp es_ES
dc.description.references de la Hera-Portillo Á, López-Gutiérrez J, Zorrilla-Miras P, Mayor B, López-Gunn E (2020) The ecosystem resilience concept applied to hydrogeological systems: a general approach. Water 12(6):1824. https://doi.org/10.3390/w12061824 es_ES
dc.description.references deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55(12):1613–1624. https://doi.org/10.1190/1.1442813 es_ES
dc.description.references Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25(8–12):899–944. https://doi.org/10.1016/S0309-1708(02)00063-5 es_ES
dc.description.references Duffy CJ, Al-Hassan S (1988) Groundwater circulation in a closed desert basin: topographic scaling and climatic forcing. Water Resour Res 24(10):1675–1688. https://doi.org/10.1029/WR024i010p01675 es_ES
dc.description.references EEA (2018) Corine land cover (CLC) 2018, Version 20b2. Release date: 21-12-2018. European Environment Agency. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. Accessed January 2022 es_ES
dc.description.references Elder JW (1967) Steady free convection in a porous medium heated from below. J Fluid Mech 27(01):29–48. https://doi.org/10.1017/S0022112067000023 es_ES
dc.description.references European Environment Information and Observation Network (EIONET) (2000) Central data repository: the Reference Portal for NATURA 2000. https://cdr.eionet.europa.eu/help/natura2000. Accessed 17 June 2021 es_ES
dc.description.references Fan Y, Duffy CJ, Oliver DS Jr (1997) Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments. J Hydrol 196(1–4):139–184. https://doi.org/10.1016/S0022-1694(96)03292-1 es_ES
dc.description.references Farajnejad H, Karbassi A, Heidari M (2017) Fate of toxic metals during estuarine mixing of fresh water with saline water. Environ Sci Pollut Res 24(35):27430–27435. https://doi.org/10.1007/s11356-017-0329-z es_ES
dc.description.references Geng X, Boufadel MC (2015) Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation. J Hydrol 524:427–438. https://doi.org/10.1016/j.jhydrol.2015.02.046 es_ES
dc.description.references Glover RE (1959) The pattern of fresh-water flow in a coastal aquifer. J Geophys Res 64(4):457–459. https://doi.org/10.1029/JZ064i004p00457 es_ES
dc.description.references Gómez-Alday JJ, Carrey R, Valiente N, Otero N, Soler A, Ayora C, Sanz D, Muñoz-Martín A, Castaño S, Recio C (2014) Denitrification in a hypersaline lake–aquifer system (Pétrola Basin, central Spain): the role of recent organic matter and Cretaceous organic rich sediments. Sci Total Environ 497:594–606. https://doi.org/10.1016/j.scitotenv.2014.07.129 es_ES
dc.description.references Gunnars A, Blomqvist S (1997) Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37(3):203–226. https://doi.org/10.1023/A:1005744610602 es_ES
dc.description.references Guo W, Langevin CD (2002) User’s guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow. US Geol Surv Tech Water Resour Invest book 06, chap A7. https://fl.water.usgs.gov/PDF_files/twri_6_A7_guo_langevin.pdf. Accessed 17 June 2021 es_ES
dc.description.references Heagle D, Hayashi M, van der Kamp G (2013) Surface–subsurface salinity distribution and exchange in a closed-basin prairie wetland. J Hydrol 478:1–14. https://doi.org/10.1016/j.jhydrol.2012.05.054 es_ES
dc.description.references Henry HR (1964) Interfaces between salt water and fresh water in coastal aquifers. US Geol Surv Water Suppl Pap C35-70 es_ES
dc.description.references Heredia J, Díaz JM (2007) Estado del arte sobre la representación numérica de sistemas de flujo bajo condiciones de densidad variable [State of the art on the numerical representation of flow systems under conditions of variable density]. Bol Geol Min 118:555–576. http://www.igme.es/Boletin/2002/113_4_2002/art.4-02.pdf. Accessed 17 June 2021 es_ES
dc.description.references Holzbecher EO (1998) Modeling density-driven flow in porous media: principles, numerics, software, vol 1. Springer, Heidelberg, Germany es_ES
dc.description.references Instituto Geológico y Minero de España (IGME) (1981) Geological maps number 791, 792, 817, scale 1:50,000 from the MAGNA 50 project. Download information from http://info.igme.es/cartografiadigital/geologica/Magna50.aspx. Accessed 17 June 2021 es_ES
dc.description.references Kim OS, Imhoff JF, Witzel KP, Junier P (2011) Distribution of denitrifying bacterial communities in the stratified water column and sediment–water interface in two freshwater lakes and the Baltic Sea. Aquatic Ecol 45(1):99–112. https://doi.org/10.1007/s10452-010-9335-7 es_ES
dc.description.references Knorr B, Xie Y, Stumpp C, Maloszewski P, Simmons CT (2016) Representativeness of 2D models to simulate 3D unstable variable density flow in porous media. J Hydrol 542:541–551. https://doi.org/10.1016/j.jhydrol.2016.09.026 es_ES
dc.description.references Konikow LF, Sanford WE, Campbell PJ (1997) Constant-concentration boundary condition: lessons from the HYDROCOIN variable-density groundwater benchmark problem. Water Resour Res 33(10):2253–2261. https://doi.org/10.1029/97WR01926 es_ES
dc.description.references Langevin CD, Thorne Jr DT, Dausman AM, Sukop MC, Guo W (2008) SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport. US Geol Surv Tech Methods 6-A22. https://doi.org/10.3133/tm6A22 es_ES
dc.description.references Last WM, Schweyen TH (1983) Sedimentology and geochemistry of saline lakes of the Great Plains. Hydrobiologia 105(1):245–263. https://doi.org/10.1007/BF00025192 es_ES
dc.description.references Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method Geophys Prospect 44(1):131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x es_ES
dc.description.references Loke MH, Dahlin T (2002) A comparison of the Gauss–Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49(3):149–162. https://doi.org/10.1016/S0926-9851(01)00106-9 es_ES
dc.description.references McDonald M, Harbaugh A (1984) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Open File Rep 83-875. https://doi.org/10.3133/ofr83875 es_ES
dc.description.references Nield DA, Simmons CT, Kuznetsov AV, Ward JD (2008) On the evolution of salt lakes: episodic convection beneath an evaporating salt lake. Water Resour Res 44(2). https://doi.org/10.1029/2007WR006161 es_ES
dc.description.references Oren A (2018) Introduction to salt lake sciences. Science Press, Beijing, 209 pp es_ES
dc.description.references Porter K, Kukkaro P, Bamford JK, Bath C, Kivelä HM, Dyall-Smith ML, Bamford DH (2005) SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335(1):22–33. https://doi.org/10.1016/j.virol.2005.01.043 es_ES
dc.description.references Prieto-Ballesteros O, Rodríguez N, Kargel JS, Kessler CG, Amils R, Remolar DF (2003) Tirez lake as a terrestrial analog of Europa. Astrobiology 3(4):863–877. https://doi.org/10.1089/153110703322736141 es_ES
dc.description.references Salafsky N, Salzer D, Stattersfield AJ, Hilton-Taylor C, Neugarten R, Butchart SHM, Wilkie D (2008) A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv Biol 22:897–911. https://doi.org/10.1111/j.1523-1739.2008.00937.x es_ES
dc.description.references Santoro AE (2010) Microbial nitrogen cycling at the saltwater–freshwater interface. Hydrogeol J 18(1):187–202. https://doi.org/10.1007/s10040-009-0526-z es_ES
dc.description.references Simmons CT, Narayan KA, Wooding RA (1999) On a test case for density-dependent groundwater flow and solute transport models: the salt lake problem. Water Resour Res 35(12):3607–3620. https://doi.org/10.1029/1999WR900254 es_ES
dc.description.references Simmons CT, Fenstemaker TR, Sharp JM Jr (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52(1–4):245–275. https://doi.org/10.1016/S0169-7722(01)00160-7 es_ES
dc.description.references Simmons C, Bauer-Gottwein P, Graf T, Kinzelbach W, Kooi H, Li L, Post V, Prommer H, Therrien R, Voss CI, Ward J (2010) Variable density groundwater flow: from modelling to applications. In: Wheater HS, Mathias SA, Li X (eds) Groundwater modelling in arid and semi-arid areas, 1st edn. Cambridge University Press, Cambridge, UK, pp 87–119 es_ES
dc.description.references Tyler SW, Munoz JF, Wood WW (2006) The response of playa and sabkha hydraulics and mineralogy to climate forcing. Groundwater 44(3):329–338. https://doi.org/10.1111/j.1745-6584.2005.00096.x es_ES
dc.description.references Valiente N (2018) A multidisciplinary approach for assessing natural attenuation of pollutants in a highly saline lake-aquifer system: the case of Pétrola lake, Spain. PhD Thesis, Universidad de Castilla-La Mancha, Spain es_ES
dc.description.references Valiente N, Carrey R, Otero N, Gutierrez-Villanueva MA, Soler A, Sanz D, Gómez-Alday JJ (2017) Tracing sulfate recycling in the hypersaline Pétrola Lake (SE Spain): a combined isotopic and microbiological approach. Chem Geol 473:74–89. https://doi.org/10.1016/j.chemgeo.2017.10.024 es_ES
dc.description.references Valiente N, Carrey R, Otero N, Soler A, Sanz D, Muñoz-Martín A, Jirsa F, Wanek W, Gómez-Alday JJ (2018) A multi-isotopic approach to investigate the influence of land use on nitrate removal in a highly saline lake-aquifer system. Sci Total Environ 631:649–659. https://doi.org/10.1016/j.scitotenv.2018.03.059 es_ES
dc.description.references Voss CI (1984) A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. US Geol Surv Water Resour Invest Rep 84-4369. https://pubs.usgs.gov/wri/1984/4369/report.pdf. Accessed 17 June 2021 es_ES
dc.description.references Voss CI (2016) Key note: density-driven groundwater flow: seawater intrusion, natural convection, and other phenomena. Rendiconti Online della Società Geologica Italiana, vol. 39. International Congress of IAH AQUA2015. https://doi.org/10.3301/ROL.2016.63 es_ES
dc.description.references Voss CI, Provost AM (2002) SUTRA: a model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport. US Geol Surv Water Resour Invest Rep 2002-4231. https://doi.org/10.3133/wri024231 es_ES
dc.description.references Voss CI, Souza WR (1987) Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour Res 23(10):1851–1866. https://doi.org/10.1029/WR023i010p01851 es_ES
dc.description.references Waiser M, Robarts R (2009) Saline inland waters. In: Linkens GE (ed) Encyclopedia of inland waters. Elsevier, Amsterdam, pp 634–644 es_ES
dc.description.references Williams WD (1996) The largest, highest and lowest lakes of the world: saline lakes. Verh Int Verein Limnol 26(1):61–79. https://doi.org/10.1080/03680770.1995.11900693 es_ES
dc.description.references Wooding RA, Tyler SW, White I (1997a) Convection in groundwater below an evaporating salt lake: 1. onset of instability. Water Resour Res 33(6):1199–1217. https://doi.org/10.1029/96WR03533 es_ES
dc.description.references Wooding RA, Tyler SW, White I, Anderson PA (1997b) Convection in groundwater below an evaporating salt lake: 2. evolution of fingers or plumes. Water Resour Res 33(6):1219–1228. https://doi.org/10.1029/96WR03534 es_ES
dc.description.references Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems es_ES
dc.description.references documentation and user's guide. Contract Report SERDP-99-1, US Army Engineer Research and Development Center, Vicksburg, MS, 239 pp. https://hydro.geo.ua.edu/mt3d/mt3dmanual.pdf. Accessed 17 June 2021 es_ES
dc.description.references Zimmermann S, Bauer P, Held R, Kinzelbach W, Walther JH (2006) Salt transport on islands in the Okavango Delta: numerical investigations. Adv Water Resour 29(1):11–29. https://doi.org/10.1016/j.advwatres.2005.04.013 es_ES
dc.description.references Zonge K, Wynn J, Urquhart S (2005) Resistivity, induced polarization, and complex resistivity. In: Butler DK (ed) Near-surface geophysics. Society of Exploration Geophysicists, Tulsa, OK, pp 265–300. https://doi.org/10.1190/1.9781560801719.ch9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem