- -

Analytic Solution for the Strongly Nonlinear Multi-Order Fractional Version of a BVP Occurring in Chemical Reactor Theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analytic Solution for the Strongly Nonlinear Multi-Order Fractional Version of a BVP Occurring in Chemical Reactor Theory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ertürk, Vedat Suat es_ES
dc.contributor.author Alomari, A.L. es_ES
dc.contributor.author Kumar, Pushpendra es_ES
dc.contributor.author Murillo Arcila, Marina es_ES
dc.date.accessioned 2023-10-23T18:00:57Z
dc.date.available 2023-10-23T18:00:57Z
dc.date.issued 2022-06-18 es_ES
dc.identifier.issn 1026-0226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198601
dc.description.abstract [EN] This study is devoted to constructing an approximate analytic solution of the fractional form of a strongly nonlinear boundary value problem with multi-fractional derivatives that comes in chemical reactor theory. We construct the solution algorithm based on the generalized differential transform technique in four simple steps. The fractional derivative is defined in the sense of Caputo. We also mathematically prove the convergence of the algorithm. The applicability and effectiveness of the given scheme are justified by simulating the equation for given parameter values presented in the system and compared with existing published results in the case of standard derivatives. In addition, residual error computation is used to check the algorithm's correctness. The results are presented in several tables and figures. The goal of this study is to justify the effects and importance of the proposed fractional derivative on the given nonlinear problem. The generalization of the adopted integer-order problem into a fractional-order sense which includes the memory in the system is the main novelty of this research. es_ES
dc.description.sponsorship AcknowledgmentsMarina Murillo-Arcila was supported by MCIN/AEI/10.13039/501100011033, Project no. PID2019-105011GBI00, and by Generalitat Valenciana, Project no. PROMETEU/2021/070. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Discrete Dynamics in Nature and Society es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Analytic Solution for the Strongly Nonlinear Multi-Order Fractional Version of a BVP Occurring in Chemical Reactor Theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2022/8655340 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2021%2F070/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ertürk, VS.; Alomari, A.; Kumar, P.; Murillo Arcila, M. (2022). Analytic Solution for the Strongly Nonlinear Multi-Order Fractional Version of a BVP Occurring in Chemical Reactor Theory. Discrete Dynamics in Nature and Society. 2022:1-9. https://doi.org/10.1155/2022/8655340 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2022/8655340 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2022 es_ES
dc.relation.pasarela S\501665 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
upv.costeAPC 2900 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem