- -

Learning temporal action models from multiple plans: A constraint satisfaction approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Learning temporal action models from multiple plans: A constraint satisfaction approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido, Antonio es_ES
dc.date.accessioned 2023-10-23T18:01:04Z
dc.date.available 2023-10-23T18:01:04Z
dc.date.issued 2022-02 es_ES
dc.identifier.issn 0952-1976 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198603
dc.description.abstract [EN] Learning, as a discovery task from past observations, is interesting in engineering contexts for identifying structures and improving accuracy. Learning in planning scenarios aims at recognizing past behavior to predict action models to improve decisions. This is appealing because practical scenarios are usually complex, sometimes difficult to be described formally, which require expert knowledge and engineering that becomes impractical in real-world applications. We introduce a Constraint Satisfaction formulation for learning PDDL2.1 temporal action models in planning. Given a collection of observations on multiple plans and a set of empty operators, we automatically create a learning task that identifies which conditions+effects are necessary, together with their temporal annotation, and induces durations and costs. Our formulation encapsulates planning (causal links, threats and effect interferences) and mutex (to avoid contradictions) constraints to be fully satisfied from the observed plans. The formulation is simple, but it proves very effective and easily adaptable to different levels of expressiveness. We evaluate such effectiveness in different IPC domains and compare the quality of the learning vs. other state-of-the-art learning approaches. es_ES
dc.description.sponsorship This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Applications of Artificial Intelligence es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Learning action models es_ES
dc.subject Planning es_ES
dc.subject Temporal planning es_ES
dc.subject Constraint satisfaction es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Learning temporal action models from multiple plans: A constraint satisfaction approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engappai.2021.104590 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Garrido, A. (2022). Learning temporal action models from multiple plans: A constraint satisfaction approach. Engineering Applications of Artificial Intelligence. 108:1-14. https://doi.org/10.1016/j.engappai.2021.104590 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engappai.2021.104590 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.relation.pasarela S\451724 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem