Mostrar el registro sencillo del ítem
dc.contributor.author | Guasque Ortega, Ana | es_ES |
dc.contributor.author | Balbastre, Patricia | es_ES |
dc.date.accessioned | 2023-10-26T18:01:44Z | |
dc.date.available | 2023-10-26T18:01:44Z | |
dc.date.issued | 2022-10 | es_ES |
dc.identifier.issn | 0916-8532 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198867 | |
dc.description.abstract | [EN] In order to obtain a feasible schedule of a hard real-time system, heuristic based techniques are the solution of choice. In the last few years, optimization solvers have gained attention from research communities due to their capability of handling large number of constraints. Recently, some works have used integer linear programming (ILP) for solving mono processor scheduling of real-time systems. In fact, ILP is commonly used for static scheduling of multiprocessor systems. However, two main solvers are used to solve the problem indistinctly. But, which one is the best for obtaining a schedulable system for hard real-time systems? This paper makes a comparison of two well-known optimization software packages (CPLEX and GUROBI) for the problem of finding a feasible schedule on monoprocessor hard real-time systems. | es_ES |
dc.description.sponsorship | This work was supported under Grant PLEC2021-007609 funded by MCIN/AEI/10.13039/501100011033 and by the "European Union NextGeneration EU/PRTR" | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electronics, Information and Communications Engineers | es_ES |
dc.relation.ispartof | IEICE Transactions on Information and Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Integer linear programming | es_ES |
dc.subject | Hard real-time scheduling | es_ES |
dc.subject | Optimization | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Evaluation and comparison of integer programming solvers for hard real-time scheduling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1587/transinf.2022EDP7073 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PLEC2021-007609//MOVILIDAD EN LA CIUDAD DEL FUTURO. PREPARAR A LAS CIUDADES PARA LA NUEVA MOVILIDAD 2030 A TRAVÉS DE LAS 4 UNIVERSIDADES POLITÉCNICAS ESPAÑOLAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Guasque Ortega, A.; Balbastre, P. (2022). Evaluation and comparison of integer programming solvers for hard real-time scheduling. IEICE Transactions on Information and Systems. E105-D(10):1726-1733. https://doi.org/10.1587/transinf.2022EDP7073 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1587/transinf.2022EDP7073 | es_ES |
dc.description.upvformatpinicio | 1726 | es_ES |
dc.description.upvformatpfin | 1733 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | E105-D | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\472724 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | [1] R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of optimization solvers,” Journal of Statistics and Management Systems, vol.20, no.4, pp.623-635, 2017. 10.1080/09720510.2017.1395182 | es_ES |
dc.description.references | [2] L.M. Hvattum, A. LÞkketangen, and F. Glover, “Comparisons of commercial mip solvers and an adaptive memory (tabu search) procedure for a class of 0-1 integer programming problems,” Algorithmic Operations Research, vol.7, 2012. | es_ES |
dc.description.references | [3] P.G. Saghand and H. Charkhgard, “Exact solution approaches for integer linear generalized maximum multiplicative programs through the lens of multi-objective optimization,” Computers and Operations Research, vol.137, p.105549, 2022. 10.1016/j.cor.2021.105549 | es_ES |
dc.description.references | [4] R. Linfati, G. Gatica, and J.W. Escobar, “A mathematical model for scheduling and assignment of customers in hospital waste collection routes,” Applied Sciences, vol.11, no.22, 2021. 10.3390/app112210557 | es_ES |
dc.description.references | [5] G. Liuzzi, M. Locatelli, V. Piccialli, and S. Rass, “Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems,” Computational Optimization and Applications, vol.79, no.3, pp.561-599, July 2021. 10.1007/s10589-021-00282-7 | es_ES |
dc.description.references | [6] C. Flores-Fonseca, R. Linfati, and J.W. Escobar, “Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines,” Operational Research, vol.22, no.3, pp.2529-2553, 2022. 10.1007/s12351-020-00618-x | es_ES |
dc.description.references | [7] M. González, J.J. López-Espın, and J. Aparicio, “A parallel algorithm for matheuristics: A comparison of optimization solvers,” Electronics, vol.9, no.9, 2020. 10.3390/electronics9091541 | es_ES |
dc.description.references | [8] A.P. Punnen, P. Pandey, and M. Friesen, “Representations of quadratic combinatorial optimization problems: A case study using quadratic set covering and quadratic knapsack problems,” Computers and Operations Research, vol.112, p.104769, 2019. 10.1016/j.cor.2019.104769 | es_ES |
dc.description.references | [9] J. Jablonský, “Recent optimization packages and their comparison,” Hradec Economic Days, vol.7, no.1, 2017. | es_ES |
dc.description.references | [10] S. Baruah, “Feasibility analysis of preemptive real-time systems upon heterogeneous multiprocessor platforms,” 25th IEEE International Real-Time Systems Symposium, pp.37-46, 2004. 10.1109/real.2004.20 | es_ES |
dc.description.references | [11] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B. Srivastava, “Power optimization of variable-voltage core-based systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.18, no.12, pp.1702-1714, 1999. 10.1109/43.811318 | es_ES |
dc.description.references | [12] V.A. Nguyen, D. Hardy, and I. Puaut, “Cache-conscious off-line real-time scheduling for multi-core platforms: algorithms and implementation,” Real-Time Systems, vol.55, no.4, pp.810-849, 2019. 10.1007/s11241-019-09333-z | es_ES |
dc.description.references | [13] Y. Sun and M.D. Natale, “Weakly hard schedulability analysis for fixed priority scheduling of periodic real-time tasks,” ACM Trans. Embed. Comput. Syst., vol.16, no.5s, pp.1-19, 2017. 10.1145/3126497 | es_ES |
dc.description.references | [14] T. Fleming and A. Burns, “Investigating mixed criticality cyclic executive schedule generation,” Proc. Workshop on Mixed Criticality (WMC), 2015. | es_ES |
dc.description.references | [15] W. Zhang, Y. Hu, H. He, Y. Liu, and A. Chen, “Linear and dynamic programming algorithms for real-time task scheduling with task duplication,” The Journal of Supercomputing, vol.75, no.2, pp.494-509, 2019. 10.1007/s11227-017-2076-9 | es_ES |
dc.description.references | [16] B. Rouxel, S. Derrien, and I. Puaut, “Tightening contention delays while scheduling parallel applications on multi-core architectures,” ACM Trans. Embed. Comput. Syst., vol.16, no.5s, pp.1-20, 2017. 10.1145/3126496 | es_ES |
dc.description.references | [17] A. Azim, G. Carvajal, R. Pellizzoni, and S. Fischmeister, “Generation of communication schedules for multi-mode distributed real-time applications,” Proceedings of Design, Automation and Test in Europe (DATE), Grenoble, France, pp.1-6, March 2014. 10.7873/date2014.306 | es_ES |
dc.description.references | [18] I.I. Cplex, “V12. 1: User's manual for cplex,” International Business Machines Corporation, 2019. | es_ES |
dc.description.references | [19] M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,” Mathematical Programming, vol.104, no.1, pp.91-104, Sept. 2005. 10.1007/s10107-004-0570-3 | es_ES |
dc.description.references | [20] Gurobi, Gurobi optimizer reference manual, Gurobi Optimization, 2019. | es_ES |
dc.description.references | [21] P.K. Harter, Jr., “Response times in level-structured systems,” ACM Trans. Comput. Syst., vol.5, no.3, pp.232-248, Aug. 1987. 10.1145/24068.24069 | es_ES |
dc.description.references | [22] M. Joseph and P. Pandya, “Finding response times in a real-time system,” The Computer Journal, vol.29, no.5, pp.390-395, 1986. 10.1093/comjnl/29.5.390 | es_ES |
dc.description.references | [23] C.L. Liu and J.W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,” J. ACM, vol.20, no.1, pp.46-61, Jan. 1973. 10.1145/321738.321743 | es_ES |
dc.description.references | [24] P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo, “A task model to reduce control delays,” Real-Time Syst., vol.27, no.3, pp.215-236, 2004. 10.1023/b:time.0000029049.50766.fa | es_ES |
dc.description.references | [25] E. Bini and G.C. Buttazzo, “Measuring the performance of schedulability tests,” Real-Time Systems, vol.30, pp.129-154, 2005. 10.1007/s11241-005-0507-9 | es_ES |
dc.description.references | [26] V. Brocal, P. Balbastre, R. Ballester, and I. Ripoll, “Task period selection to minimize hyperperiod,” ETFA2011, pp.1-4, 2011. 10.1109/etfa.2011.6059178 | es_ES |
upv.costeAPC | 1000 | es_ES |