Rajkumar R, Praveen Kumar P (2019) Structure, crystal growth and characterization of piperazinium bis (4-nitrobenzoate) dihydrate crystal for nonlinear optics and optical limiting applications. J Mol Struct 1179:108–117. https://doi.org/10.1016/j.molstruc.2018.10.085
Chaouachi S, Hamdi B, Zouari R (2017) Crystal structure, electrical study and dielectric behavior of a new centrosymmetric hybrid material. Synth Met 223:122–213. https://doi.org/10.1016/j.synthmet.2016.11.030
Hamdi M, Karoui S, Oueslati A, Kamoun S, Hlel F (2018) Synthesis, crystal structure and dielectric properties of the new organic-inorganic hybrid compound [C6H10N2]7[Bi2Cl11]2.4[Cl]. J Mol Struct 1154:516–523. https://doi.org/10.1016/j.molstruc.2017.10.063
[+]
Rajkumar R, Praveen Kumar P (2019) Structure, crystal growth and characterization of piperazinium bis (4-nitrobenzoate) dihydrate crystal for nonlinear optics and optical limiting applications. J Mol Struct 1179:108–117. https://doi.org/10.1016/j.molstruc.2018.10.085
Chaouachi S, Hamdi B, Zouari R (2017) Crystal structure, electrical study and dielectric behavior of a new centrosymmetric hybrid material. Synth Met 223:122–213. https://doi.org/10.1016/j.synthmet.2016.11.030
Hamdi M, Karoui S, Oueslati A, Kamoun S, Hlel F (2018) Synthesis, crystal structure and dielectric properties of the new organic-inorganic hybrid compound [C6H10N2]7[Bi2Cl11]2.4[Cl]. J Mol Struct 1154:516–523. https://doi.org/10.1016/j.molstruc.2017.10.063
Karoui K, Rhaiem AB, Guidara K (2012) Dielectric properties and relaxation behavior of [TMA] 2Zn0. 5Cu0. 5Cl4 compound. Phys B407:489–493. https://doi.org/10.1016/j.physb.2011.11.021
Hachani A, Dridi I, Elleuch S, Roisnel T, Kefi R (2019) Crystal structure, spectroscopic and biological study of a new inorganic-organic hybrid compound [Cd4Cl12(H2O)2]n (C10N4H28)n. Inorg Chem Commun 100:134–143. https://doi.org/10.1016/j.inoche.2018.12.006
Hajji R, Fersi MA, Hajji S, Hlel F, Ben Ahmed A (2019) Hirshfeld surface analysis, vibrational spectra, optical, DFT studies and biological activities of (C7H12N2)2[SnCl6]Cl2. 1.5H2O compound. Chem Phys Lett 722:160–172. https://doi.org/10.1016/j.cplett.2019.02.045
Kamminga ME, Gélvez-Rueda MC, Maheshwari S, van Droffelaar IS, Baas J, Blake GR, Grozema FC, Palstra TTM (2019) Electronic mobility and crystal structures of 2,5-dimethylanilinium triiodide and tin-based organic-inorganic hybrid compounds. J Solid State Chem 270:593–600. https://doi.org/10.1016/j.jssc.2018.12.029
Henchiri R, Ennaceur N, Cordier M, Ledoux-Rak I, Elaloui E (2017) Synthesis, X-ray crystal structure and highly non-linear optical properties of inorganic-organic hybrid compound: 1,4-diazbicyclo-octane oxonium tri- nitrates single crystal. J Phys Chem Solids 106:58–64. https://doi.org/10.1016/j.jpcs.2017.02.011
Oueslati Y, Kansız S, Valkonen A, Sahbani T, Dege N, Smirani W (2019) Synthesis, crystal structure, DFT calculations, Hirshfeld surface, vibrational and optical properties of a novel hybrid non-centrosymmetric material (C10H15N2)2H2P2O7. J Mol Struct 1196:499–507. https://doi.org/10.1016/j.molstruc.2019.06.110
Ben Rached A, Guionneau P, Lebraud E, Mhiri T, Elaoud Z (2017) Structural versus electrical properties of an organic-inorganic hybrid material based on sulfate. J Phys Chem Solids 100:25–32. https://doi.org/10.1016/j.jpcs.2016.09.006
Nenwa J, Djomo ED, Nfor EN, Djonwouo PL, Mbarki M, Fokwa BPT (2015) Two novel organic–inorganic hybrid compounds with straight and zigzag chain alignments of Cu(II) centers: synthesis, crystal structure, spectroscopy, thermal analysis and magnetism. Polyhedron 99:26–33. https://doi.org/10.1016/j.poly.2015.06.023
Vishwakarma AK, Kumari R, Ghalsasi PS, Arulsamy N (2017) Crystal structure, thermochromic and magnetic properties of organic-inorganic hybrid compound: (C7H7N2S)2CuCl4. J Mol Struct 1141:93–98. https://doi.org/10.1016/j.molstruc.2017.03.076
Teiten M-H, Dicato M, Diederich M (2014) Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 19:20839–20863. https://doi.org/10.3390/molecules191220839
Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G (2010) Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 20:9306–9321. https://doi.org/10.1039/C0JM00432D
Smirani W, Nasr CB, Rzaigui M (2004) Synthesis and crystal structure of a new o-ethylphenylammonium triphosphate [2-C2H5C6H4NH3]3H2P3O10. Mater Res Bull 39:1103–1111. https://doi.org/10.1016/j.materresbull.2004.02.013
Smirani W, Nasr CB, Rzaigui M (2004) Synthesis and structure characterization of piperazine1,4-diium triphosphate. Phosphorus Sulfur Silicon Relat Elem 179:2195–2204. https://doi.org/10.1080/10426500490475003
Sta W, Mohamed R (2005) Crystal structure of tris(3,5-diinethoxyanilinium) dihydrogentriphosphate, [(CH3O)2(C6H3NH3)]3[H2P3O10]. Z Kristallogr NCS 220:250–252. https://doi.org/10.1524/ncrs.2005.220.14.260
Sta W, Mohamed R (2005) Structural characterization of a new organic triphosphate, [4-(OCH3)C6H4CH2NH3]4H2P3O10H4P3O10. Anal Sci: X-Ray Struct Anal Online 21:x109–x110. https://doi.org/10.2116/analscix.21.x109
Smirani W (2007) Crystal structure and spectroscopic studies of [2,6-(C2H5)2C6H3NH3]2H3P3O10. Phosphorus Sulfur Silicon Relat Elem 182:1727–1737. https://doi.org/10.1080/10426500701313904
Souissi S, Smirani W, Nasr CB, Rzaigui M (2007) Structural and physicochemical studies of [2,3-(CH3)2C6H3NH3]4HP3O10.2H2O. Phosphorus Sulfur Silicon Relat Elem 182:2731–2743. https://doi.org/10.1080/10426500701519336
Mechergui J, Belam W, Mohamed R (2007) Crystal structure of 1-(2,3-dimethylphenyl) piperazinium dihydrogentriphosphate trihydrate, [C12H19N2]3[H2P3O10]. 3H2O. Z Kristallogr NCS 222:409–411. https://doi.org/10.1524/ncrs.2007.0174
Belghith S, Hamada LB, Jouini A (2013) Crystal structure and physicochemical properties of a new 4,4′-diammoniumdiphenylether triphosphate [C12H14N2O]2HP3O10.2H2O. J Inorg Organomet Polym Mater 23:779–783. https://doi.org/10.1007/s10904-013-9831-z
Ryckebusch A, Debreu-Fontaine M-A, Mouray E, Grellier P, Sergheraert C, Melnyk P (2005) Synthesis and antimalarial evaluation of new N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine derivatives. Bioorg Med Chem Lett 15:297–302. https://doi.org/10.1016/j.bmcl.2004.10.080
Ryckebusch A, Deprez-Poulain R, Debreu-Fontaine M-A, Vandaele R, Mouray E, Grellier P, Sergheraert C (2003) Synthesis and antimalarial evaluation of new 1,4-bis(3-aminopropyl)piperazine derivatives. Bioorg Med Chem Lett 13:3783–3787. https://doi.org/10.1016/j.bmcl.2003.07.008
Wang S-F, Yin Y, Qiao F, Wu X, Sha S, Zhang L, Zhu H-L (2014) Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg Med Chem 22:2409–2415. https://doi.org/10.1016/j.bmc.2014.09.048
Yevich JP, New JS, Smith DW, Lobeck WG, Catt JD, Minielli JL, Eison MS, Taylor DP, Riblet LA, Temple DL (1986) Synthesis and biological evaluation of 1-(1,2-benzisothiazol-3-yl) and (1,2-benzisoxazol-3-yl) piperazine derivatives as potential antipsychotic agents. J Med Chem 29:359–369. https://doi.org/10.1021/jm00153a010
Bhosale SH, Kanhed AM, Dash RC, Suryawanshi MR, Mahadik KR (2014) Design, synthesis, pharmacological evaluation and computational studies of 1-(biphenyl-4-yl)-2-[4-(substituted phenyl)-piperazin-1-yl]ethanones as potential antipsychotics. Eur J Med Chem 74:358–365. https://doi.org/10.1016/j.ejmech.2013.12.043
Bali A, Malhotra S, Dhir H, Kumar A, Sharma A (2009) Synthesis and evaluation of 1-(quinoliloxypropyl)-4-aryl piperazines for atypical antipsychotic effect. Bioorg Med Chem Lett 19:3041–3044. https://doi.org/10.1016/j.bmcl.2009.04.019
Suryavanshi H, Rathore M (2017) Synthesis and biological activities of piperazine derivatives as antimicrobial and antifungal agents. Org Commun 10:228–238. https://doi.org/10.25135/acg.oc.23.17.05.026
Koparde S, Hosamani KM, Kulkarni V, Joshi SD (2018) Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chem Data Collect 15–16:197–206. https://doi.org/10.1016/j.cdc.2018.06.001
Sheldrick G (2015) SHELXT -integrated space-group and crystal-structure determination. Acta Cryst A71:3–8. https://doi.org/10.1107/S2053273314026370
Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8. https://doi.org/10.1107/S2053229614024218
Brandenburg K (1998) DIAMOND Version 2.0
Wolff S, Grimwood D, McKinnon J, Turner M, Jayatilaka D, Spackman M (2012) Crystal explorer. The University of Western Australia Perth, Australia
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al- Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford
Dennington R II, Keith T, Millam J (2007) Gauss View, Version 4.1.2. Semichem Inc., Shawnee Mission
Tamer Ö, Avcı D, Atalay Y (2016) Synthesis, X-ray crystal structure, photophysical characterization and nonlinear optical properties of the unique manganese complex with picolinate and 1,10 phenantroline: toward the designing of new high NLO response crystal. J Phys Chem Solids 99:124–133. https://doi.org/10.1016/j.jpcs.2016.08.013
Baur W (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Cryst B30:1195–1215. https://doi.org/10.1107/S0567740874004560
Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358. https://doi.org/10.1021/ja00839a011
Hansia P, Guruprasad N, Vishveshwara S (2006) Ab initio studies on the tri- and diphosphate fragments of adenosine triphosphate. Biophys Chem 119:127–136. https://doi.org/10.1016/j.bpc.2005.07.011
McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst B60:627–668. https://doi.org/10.1107/S0108768104020300
Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. Cryst Eng Comm 11:19–32. https://doi.org/10.1039/B818330A
Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220. https://doi.org/10.1016/S0009-2614(97)00100-0
Ilmi R, Kansız S, Dege N, Khan MS (2019) Synthesis, structure, Hirshfeld surface analysis and photophysical studies of red emitting europium acetylacetonate complex incorporating a phenanthroline derivative. J Photochem Photobiol A 377:268–281. https://doi.org/10.1016/j.jphotochem.2019.03.036
Kansiz S, Dege N, Topcu Y, Atalay Y, Gaidai SV (2018) Crystal structure and Hirshfeld surface analysis of (succinato κO)[N, N, N′, N′ tetrakis(2 hydroxyethyl)ethylenediamine κ5O, N, N′, O′, O′′]nickel(II) tetrahydrate. Acta Crystallogr E74:1700–1704. https://doi.org/10.1107/S2056989018015359
Kansız S, Tolan A, İçbudak H, Dege N (2019) Synthesis, crystallographic structure, theoretical calculations, spectral and thermal properties of trans-diaquabis(trans-4-aminoantipyrine)cobalt(II) acesulfamate. J Mol Struct 1190:102–115. https://doi.org/10.1016/j.molstruc.2019.04.058
Guerrab W, Chung I-M, Kansiz S, Mague JT, Dege N, Taoufik J, Salghi R, Ali IH, Khan MI, Lgaz H, Ramli Y (2019) Synthesis, structural and molecular characterization of 2,2-diphenyl-2H,3H,5H,6H,7H-imidazo[2,1-b][1,3]thiazin-3-one. J Mol Struct 1197:369–376. https://doi.org/10.1016/j.molstruc.2019.07.081
Gabelica-Robert M, Tarte P (1982) Infrared spectrum of crystalline and glassy pyrophosphates: preservation of the pyrophosphate group in the glassy structure. J Mol Struct 79:251–254. https://doi.org/10.1016/0022-2860(82)85061-8
Cornilson BC (1984) Solid state vibrational spectra of calcium pyrophosphate dihydrate. J Mol Struct 117:1–9. https://doi.org/10.1016/0022-2860(84)87237-3
Sivakumar C, Balachandran V, Narayana B, Salian VV, Revathi B, Shanmugapriya N, Vanasundari K (2021) Molecular spectroscopic investigation, quantum chemical, molecular docking and biological evaluation of 2-(4-Chlorophenyl)-1-[3-(4-chlorophenyl)-5-[4-(propan-2-yl) phenyl-3, 5-dihydro-1H-pyrazole-yl] ethanone. J Mol Struct 1224:129010. https://doi.org/10.1016/j.molstruc.2020.129010
Shoba D, Karabacak M, Periandy S, Ramalingam S (2011) FT-IR and FT-Raman vibrational analysis, ab initio HF and DFT simulations of isocyanic acid 1-naphthyl ester. Spectrochim Acta Part A 81:504–518. https://doi.org/10.1016/j.saa.2011.06.044
Kansız S, Dege N (2018) Synthesis, crystallographic structure, DFT calculations and Hirshfeld surface analysis of a fumarate bridged Co(II) coordination polymer. J Mol Struct 1173:42–51. https://doi.org/10.1016/j.molstruc.2018.06.071
Ersanli CC, Kantar GK, Şaşmaz S (2017) Crystallographic, spectroscopic (FTIR and NMR) and quantum computational calculation studies on bis(2-methoxy-4-((E)-prop-1-enyl)phenyl)oxalate. J Mol Struct 1143:318–327. https://doi.org/10.1016/j.molstruc.2017.04.032
Tankov I, Yankova R (2019) Hirshfeld surface, DFT vibrational (FT-IR) and electronic (UV–vis) studies on 4-amino-1H-1,2,4-triazolium nitrate. J Mol Struct 1179:581–592. https://doi.org/10.1016/j.molstruc.2018.11.050
Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740. https://doi.org/10.1021/ic00277a030
Sastri V, Perumareddi J (1997) Molecular orbital theoretical studies of some organic corrosion inhibitors. Corrosion 53:617–622. https://doi.org/10.5006/1.3290294
Şen F, Kansiz S, Uçar I (2017) A one-dimensional copper(II) coordination polymer incorporating succinate and N, N-diethylethylenediamine ligands: crystallographic analysis, vibrational and surface features, and DFT analysis. Acta Crystallogr C 73:517–524. https://doi.org/10.1107/S2053229617008452
Demircioğlu Z, Ersanli CC, Kantar GK, Şaşmaz S (2019) Spectroscopic, Hirshfeld surface, X-ray diffraction methodologies and local & global chemical activity calculations of 5-(2-methoxy-4-(prop-1-en-1-yl)phenoxy)pyrazine-2,3-dicarbonitrile. J Mol Struct 1181:25–37. https://doi.org/10.1016/j.molstruc.2018.12.072
Tankov I, Yankova R (2019) Mechanistic investigation of molecular geometry, intermolecular interactions and spectroscopic properties of pyridinium nitrate. Spectrochim Acta A 219:53–67. https://doi.org/10.1016/j.saa.2019.04.027
Gopi V, Subbiahraj S, Chemmanghattu K, Ramamurthy PC (2020) 2,3-di(2-furyl) quinoxaline bearing 3 -ethyl rhodanine and 1,3 indandione based heteroaromatic conjugated T-shaped push-pull chromophores: design, synthesis, photophysical and non-linear optical investigations. Dyes Pigments 173:107887. https://doi.org/10.1016/j.dyepig.2019.107887
Khedhiri L, Hamdi A, Soudani S, Kaminsky W, Lefebvre F, Jelsch C, Wojtaś M, Ben Nasr C (2018) Crystal structure, Hirshfeld surface analysis, thermal behavior and spectroscopic investigations of a new organic cyclohexaphosphate, (C10H15N2)4(Li)2(P6O18)(H2O)6. J Mol Struct 1171:429–437. https://doi.org/10.1016/j.molstruc.2018.06.015
Essid M, Aloui Z (2019) Synthesis, Hirshfeld surface analysis and physicochemical studies of non-centrosymmetric semi-organic compound: [C10H15N2](H2PO4). Chem Data Collect 24:100285. https://doi.org/10.1016/j.cdc.2019.100285
Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8
Franklin S, Balasubramanian T, Nehru K, Kim Y (2009) Crystal structure, conformation, vibration and optical band gap analysis of bis [rac-propranolol nitrate]. J Mol Struct 927:121–125. https://doi.org/10.1016/j.molstruc.2009.03.003
Lagorio MG (2020) Determination of fluorescence quantum yields in scattering media. Methods Appl Fluoresc 8:043001. https://doi.org/10.1088/2050-6120/aba69c
Würth C, Grabolle M, Pauli J, Spieles M (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. U Resch-Genger Nat Protoc 8:1535–1550. https://doi.org/10.1038/nprot.2013.087
[-]