Mostrar el registro sencillo del ítem
dc.contributor.author | Bou-Belda, Eva | es_ES |
dc.contributor.author | López-Rodríguez, Daniel | es_ES |
dc.contributor.author | Micó-Vicent, B. | es_ES |
dc.contributor.author | BONET-ARACIL, MARILÉS | es_ES |
dc.date.accessioned | 2023-10-27T18:02:07Z | |
dc.date.available | 2023-10-27T18:02:07Z | |
dc.date.issued | 2022 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198959 | |
dc.description.abstract | [EN] Growing environmental conservation concerns have led researchers to seek the means to treat and recover wastewater. The textile industry dumps vast quantities of wastewater from textile dyes. By means of clays, dye waste can be separated and reused for other industrial processes. Clay absorption varies depending on the type of dye employed because factors like the reactivity of the dye molecule and its size are very important during the absorption process. The absorption capacity of calcined hydrotalcite at several concentrations was compared in a 0.05 g·L-1 solution of four distinct dyes: Direct Blue 199, Direct Red 23, Direct Blue 71 and Reactive Yellow. Dyes have different molecular weights because the weight of reactive dyes is considerably lighter than that of direct dyes, which is why the Lambert-Beer lines of each dye are previously considered. We worked with a 5 g·L-1 clay concentration to introduce the dye into the clay by stirring for 24 h in 100 ml of each dye solution before filtering it and leaving it to dry. In all cases, the dye absorption by nanoclay was nearly absolute and the initial solution was very clean, which are excellent results from the wastewater treatment point of view. Color measurement was performed by a Jasco V-670, doublebeam spectrophotometre between 190-2700 nm. Differences in color were calculated and represented in CIE-Lab* color space diagrams. Finally, thermogravimetric (TGA) and X-ray diffraction (XRD) analyses were carried out to ensure both nanoclay-dye interactions and hydrotalcite structure recovery. No large differences were observed under these conditions, which reinforces the idea of using low nanoclay concentrations | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Trans Tech Publications | es_ES |
dc.relation.ispartof | Materials Science Forum | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanoclay | es_ES |
dc.subject | Dye recovery | es_ES |
dc.subject | Direct dye recovery | es_ES |
dc.subject | Reactive dye recovery | es_ES |
dc.subject | Dyeing | es_ES |
dc.subject | Waste water | es_ES |
dc.subject | Clay pigment | es_ES |
dc.subject | Hydrotalcite | es_ES |
dc.subject.classification | INGENIERIA TEXTIL Y PAPELERA | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Direct and Reactive Dyes Recovery in Textile Wastewater Using Calcinated Hydrotalcite | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4028/p-31v71q | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Bou-Belda, E.; López-Rodríguez, D.; Micó-Vicent, B.; Bonet-Aracil, M. (2022). Direct and Reactive Dyes Recovery in Textile Wastewater Using Calcinated Hydrotalcite. Materials Science Forum. 1063:233-242. https://doi.org/10.4028/p-31v71q | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.4028/p-31v71q | es_ES |
dc.description.upvformatpinicio | 233 | es_ES |
dc.description.upvformatpfin | 242 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1063 | es_ES |
dc.identifier.eissn | 1662-9752 | es_ES |
dc.relation.pasarela | S\466789 | es_ES |
dc.description.references | M. Wakkel, B. Khiari, F. Zagrouba, Textile Wastewater Treatment by Agro-Industrial Waste: Equilibrium Modelling, Thermodynamics and Mass Transfer Mechanisms of Cationic Dyes Adsorption onto Low-Cost Lignocellulosic Adsorbent. J. Taiwan Inst. Chem. Eng. 2019, 96, 439–452. https://doi.org/10.1016/J.JTICE.2018.12.014. | es_ES |
dc.description.references | M. L. Mathew, A. Gopalakrishnan, C. T. Aravindakumar, Aravind, U. K. Low – Cost Multilayered Green Fiber for the Treatment of Textile Industry Waste Water. J. Hazard. Mater. 2019, 365, 297–305. https://doi.org/10.1016/J.JHAZMAT.2018.11.014. | es_ES |
dc.description.references | B. Micó Vicent, F.M. Martinez Verdu, J.E. Gilabert Perez, Optimización de La Síntesis de Nanopigmentos de Origen Natural Para Biopolímeros Mediante El Uso Del Diseño de Experimentos. Doctoral Thesis. Universitat Politècnica de València 2015. http://hdl.handle.net/10251/59449 (22/11/2021). | es_ES |
dc.description.references | P. Semeraro, V. Rizzi, P. Fini, S. Matera, P. Cosma, E. Franco, R. García, M. Ferrándiz, E. Núñez, J. A. Gabaldón, I. Fortea, E. Pérez, M. Ferrándiz, Interaction between Industrial Textile Dyes and Cyclodextrins. Dye. Pigment. 2015, 119, 84–94. https://doi.org/10.1016/J.DYEPIG. 2015.03.012. | es_ES |
dc.description.references | D. Sana, S. Jalila, A Comparative Study of Adsorption and Regeneration with Different Agricultural Wastes as Adsorbents for the Removal of Methylene Blue from Aqueous Solution. Chinese J. Chem. Eng. 2017, 25 (9), 1282–1287. https://doi.org/10.1016/J.CJCHE.2017.01.012. | es_ES |
dc.description.references | L. Sanchez, M. Ollier, R. P. Gonzalez, J. S. Alvarez, V. A. Nanocomposite Materials for Dyes Removal. Handb. Nanomater. Ind. Appl. 2018, 922–951. https://doi.org/10.1016/B978-0-12-813351-4.00053-5. | es_ES |
dc.description.references | M. Erkanlı, L. Yilmaz, P. Z. Çulfaz-Emecen, U. Yetis, Brackish Water Recovery from Reactive Dyeing Wastewater via Ultrafiltration. J. Clean. Prod. 2017, 165, 1204–1214. https://doi.org/10.1016/J.JCLEPRO.2017.07.195. | es_ES |
dc.description.references | M. Ogawa, R. Takee, Y. Okabe, Y. Seki, Bio-Geo Hybrid Pigment Clay-Anthocyanin Complex Which Changes Color Depending on the Atmosphere. Dye. Pigment. 2017, 139, 561–565. https://doi.org/10.1016/J.DYEPIG.2016.12.054. | es_ES |
dc.description.references | F. López Arbeloa, V. Martínez Martínez, J. Bañuelos Prieto, I. López Arbeloa, Adsorption of Rhodamine 3B Dye on Saponite Colloidal Particles in Aqueous Suspensions. Langmuir 2002, 18 (7), 2658–2664. https://doi.org/10.1021/la0113163. | es_ES |
dc.description.references | M. I. Carretero, M. Pozo, C. Sánchez, F. J. García, J. A. Medina, J. M. Bernabé, Comparison of Saponite and Montmorillonite Behaviour during Static and Stirring Maturation with Seawater for Pelotherapy. Appl. Clay Sci. 2007, 36 (1–3), 161–173. https://doi.org/10.1016/J.CLAY.2006.05.010. | es_ES |
dc.description.references | D. Guillermin, T. Debroise, P. Trigueiro, L. de Viguerie, Rigaud, B. Morlet-Savary, F. Balme, S. Janot, J.-M. Tielens, F. Michot, L. Lalevee, J. Walter, P. Jaber, M. New Pigments Based on Carminic Acid and Smectites: A Molecular Investigation. Dye. Pigment. 2019, 160, 971–982. https://doi.org/10.1016/J.DYEPIG.2018.07.021. | es_ES |
dc.description.references | E. M. Moujahid, R. Lahkale, H. Ouassif, F. Z. Bouragba, W. Elhatimi, New Organic Dye/Anionic Clay Hybrid Pigments: Preparation, Optical Properties and Structural Stability. Dye. Pigment. 2019, 162, 998–1004. https://doi.org/10.1016/J.DYEPIG.2018.11.021. | es_ES |
dc.description.references | J.-Z. Yi, L.-M. Zhang, Removal of Methylene Blue Dye from Aqueous Solution by Adsorption onto Sodium Humate/Polyacrylamide/Clay Hybrid Hydrogels. Bioresour. Technol. 2008, 99 (7), 2182–2186. https://doi.org/10.1016/J.BIORTECH.2007.05.028. | es_ES |
dc.description.references | R.A. Schoonheydt, L. Heughebaert, Clay Adsorbed Dyes: Methylene Blue on Laponite. Clay Miner. 1992, 27, 91–100,. | es_ES |
dc.description.references | H. Mittal, R. Babu, A. A. Dabbawala, S. Stephen, S. Alhassan, M. Zeolite-Y Incorporated Karaya Gum Hydrogel Composites for Highly Effective Removal of Cationic Dyes. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 586, 124161. https://doi.org/10.1016/J.COLSURFA.2019.124161. | es_ES |
dc.description.references | L. N. F. de Queiroga, D. B. França, F. Rodrigues, I. M. G. Santos, M. G. Fonseca, M. Jaber, Functionalized Bentonites for Dye Adsorption: Depollution and Production of New Pigments. J. Environ. Chem. Eng. 2019, 7 (5), 103333. https://doi.org/10.1016/J.JECE.2019.103333. | es_ES |
dc.description.references | H. Laguna, S. Loera, I. A. Ibarra, E. Lima, M. A. Vera, V. Lara, Azoic Dyes Hosted on Hydrotalcite-like Compounds: Non-Toxic Hybrid Pigments. Microporous Mesoporous Mater. 2007, 98 (1–3), 234–241. https://doi.org/10.1016/j.micromeso.2006.09.009. | es_ES |
dc.description.references | V. Rives, M. E. Pérez-Bernal, R. J. Ruano-Casero, I. Nebot-Díaz, Development of a Black Ceramic Pigment from Non Stoichiometric Hydrotalcites. J. Eur. Ceram. Soc. 2012, 32 (5), 975–987. https://doi.org/10.1016/j.jeurceramsoc.2011.11.033. | es_ES |
dc.description.references | X. Yu, J. Wang, M. Zhang, L. Yang, J. Li, P. Yang, D. Cao, Synthesis, Characterization and Anticorrosion Performance of Molybdate Pillared Hydrotalcite/in Situ Created ZnO Composite as Pigment for Mg-Li Alloy Protection. Surf. Coatings Technol. 2008, 203 (3–4), 250–255. https://doi.org/10.1016/j.surfcoat.2008.08.074. | es_ES |
dc.description.references | H. Chen, Z. Zhang, G. Zhuang, R. Jiang, A New Method to Prepare Maya Red, Pigment from Sepiolite and Basic Red 46. Appl. Clay Sci. 2019, 174, 38–46. https://doi.org/10.1016/J.CLAY.2019.03.023. | es_ES |
dc.description.references | R. M. M. dos Santos, R. G. L. Gonçalves, V. R. L. Constantino, L. M. da Costa, L. H. M. da Silva, Tronto, J. Pinto, F. G. Removal of Acid Green 68:1 from Aqueous Solutions by Calcined and Uncalcined Layered Double Hydroxides. Appl. Clay Sci. 2013, 80–81, 189–195. https://doi.org/10.1016/j.clay.2013.04.006. | es_ES |
dc.description.references | J. L. Bigman, Monitoring of Chemicals and Water. Handb. Silicon Wafer Clean. Technol. 2018, 619–657. https://doi.org/10.1016/B978-0-323-51084-4.00011-3. | es_ES |
dc.description.references | M. M. F. Silva, M. M. Oliveira, M. C. Avelino, M. G. Fonseca, R. K. S. Almeida, E. C. Silva Filho, Adsorption of an Industrial Anionic Dye by Modified-KSF-Montmorillonite: Evaluation of the Kinetic, Thermodynamic and Equilibrium Data. Chem. Eng. J. 2012, 203, 259–268. https://doi.org/10.1016/j.cej.2012.07.009. | es_ES |
dc.description.references | Huang, G.; He, J.; Zhang, X.; Feng, M.; Tan, Y.; Lv, C.; Huang, H.; Jin, Z. Applications of Lambert-Beer Law in the Preparation and Performance Evaluation of Graphene Modified Asphalt. Constr. Build. Mater. 2021, 273, 121582,. | es_ES |
dc.description.references | J. L. Bigman, K. A. Reinhardt, Monitoring of Chemicals and Water Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-323-51084-4.00011-3. | es_ES |
dc.description.references | C. Mensch, R. Chintala, D. Nawrocki, J. T. Blue, A. Bhambhani, Enabling Lyophilized Pneumococcal Conjugate Vaccines Through Formulation Design and Excipient Selection Suitable for A Multivalent Adjuvanted Vaccine. J. Pharm. Sci. 2020, 1–11. https://doi.org/10.1016/j.xphs.2020.10.038. | es_ES |
dc.description.references | L. S. Castillo-Peinado, M. Calderón-Santiago, F. Priego-Capote, Lyophilization as Pre-Processing for Sample Storage in the Determination of Vitamin D3 and Metabolites in Serum and Plasma. Talanta 2021, 222 (September 2020). https://doi.org/10.1016/j.talanta.2020. 121692. | es_ES |
dc.description.references | S. Maharjan, K. S. Liao, A. J. Wang, S. A. Curran, Highly Effective Hydrophobic Solar Reflective Coating for Building Materials: Increasing Total Solar Reflectance via Functionalized Anatase Immobilization in an Organosiloxane Matrix. Constr. Build. Mater. 2020, 243, 118189. https://doi.org/10.1016/j.conbuildmat.2020.118189. | es_ES |
dc.description.references | Y. Liu, R. Li, J. Yu, F. Ni, Y. Sheng, A. Scircle, J. V. Cizdziel, Y. Zhou, Separation and Identification of Microplastics in Marine Organisms by TGA-FTIR-GC/MS: A Case Study of Mussels from Coastal China. Environ. Pollut. 2020, No. xxxx, 115946. https://doi.org/10.1016/j.envpol.2020.115946. | es_ES |
dc.description.references | M. Umar, M. I. Ofem, A. S. Anwar, A. G. Salisu, Thermo Gravimetric Analysis (TGA) of PA6/G and PA6/GNP Composites Using Two Processing Streams. J. King Saud Univ. - Eng. Sci. 2020, No. xxxx. https://doi.org/10.1016/j.jksues.2020.09.003. | es_ES |
dc.description.references | I. Corazzari, F. Turci, R. Nisticò, TGA Coupled with FTIR Gas Analysis to Quantify the Vinyl Alcohol Unit Content in Ethylene-Vinyl Alcohol Copolymer. Mater. Lett. 2021, 284, 129030. https://doi.org/10.1016/j.matlet.2020.129030. | es_ES |
dc.description.references | H. Pálková, J. Madejová, M. Zimowska, E. Bielańska, Z. Olejniczak, L. Lityńska-Dobrzyńska, E. M. Serwicka, Laponite-Derived Porous Clay Heterostructures: I. Synthesis and Physicochemical Characterization. Microporous Mesoporous Mater. 2010, 127 (3), 228–236. https://doi.org/10.1016/j.micromeso.2009.07.019. | es_ES |
dc.description.references | W. Zhuo, Y. Xie, M. T. Benson, J. Ge, R. D. Mariani, J. Zhang, XRD and SEM/EDS Characterization of Two Quaternary Fuel Alloys (U-2.5Mo-2.5Ti-5.0Zr and U-1.5Mo-1.5Ti-7.0Zr in Wt. %) for Fast Reactors. Mater. Charact. 2020, 170 (September), 110696. https://doi.org/10.1016/j.matchar.2020.110696. | es_ES |