- -

Direct and Reactive Dyes Recovery in Textile Wastewater Using Calcinated Hydrotalcite

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Direct and Reactive Dyes Recovery in Textile Wastewater Using Calcinated Hydrotalcite

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bou-Belda, Eva es_ES
dc.contributor.author López-Rodríguez, Daniel es_ES
dc.contributor.author Micó-Vicent, B. es_ES
dc.contributor.author BONET-ARACIL, MARILÉS es_ES
dc.date.accessioned 2023-10-27T18:02:07Z
dc.date.available 2023-10-27T18:02:07Z
dc.date.issued 2022 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198959
dc.description.abstract [EN] Growing environmental conservation concerns have led researchers to seek the means to treat and recover wastewater. The textile industry dumps vast quantities of wastewater from textile dyes. By means of clays, dye waste can be separated and reused for other industrial processes. Clay absorption varies depending on the type of dye employed because factors like the reactivity of the dye molecule and its size are very important during the absorption process. The absorption capacity of calcined hydrotalcite at several concentrations was compared in a 0.05 g·L-1 solution of four distinct dyes: Direct Blue 199, Direct Red 23, Direct Blue 71 and Reactive Yellow. Dyes have different molecular weights because the weight of reactive dyes is considerably lighter than that of direct dyes, which is why the Lambert-Beer lines of each dye are previously considered. We worked with a 5 g·L-1 clay concentration to introduce the dye into the clay by stirring for 24 h in 100 ml of each dye solution before filtering it and leaving it to dry. In all cases, the dye absorption by nanoclay was nearly absolute and the initial solution was very clean, which are excellent results from the wastewater treatment point of view. Color measurement was performed by a Jasco V-670, doublebeam spectrophotometre between 190-2700 nm. Differences in color were calculated and represented in CIE-Lab* color space diagrams. Finally, thermogravimetric (TGA) and X-ray diffraction (XRD) analyses were carried out to ensure both nanoclay-dye interactions and hydrotalcite structure recovery. No large differences were observed under these conditions, which reinforces the idea of using low nanoclay concentrations es_ES
dc.language Inglés es_ES
dc.publisher Trans Tech Publications es_ES
dc.relation.ispartof Materials Science Forum es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanoclay es_ES
dc.subject Dye recovery es_ES
dc.subject Direct dye recovery es_ES
dc.subject Reactive dye recovery es_ES
dc.subject Dyeing es_ES
dc.subject Waste water es_ES
dc.subject Clay pigment es_ES
dc.subject Hydrotalcite es_ES
dc.subject.classification INGENIERIA TEXTIL Y PAPELERA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Direct and Reactive Dyes Recovery in Textile Wastewater Using Calcinated Hydrotalcite es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4028/p-31v71q es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Bou-Belda, E.; López-Rodríguez, D.; Micó-Vicent, B.; Bonet-Aracil, M. (2022). Direct and Reactive Dyes Recovery in Textile Wastewater Using Calcinated Hydrotalcite. Materials Science Forum. 1063:233-242. https://doi.org/10.4028/p-31v71q es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.4028/p-31v71q es_ES
dc.description.upvformatpinicio 233 es_ES
dc.description.upvformatpfin 242 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1063 es_ES
dc.identifier.eissn 1662-9752 es_ES
dc.relation.pasarela S\466789 es_ES
dc.description.references M. Wakkel, B. Khiari, F. Zagrouba, Textile Wastewater Treatment by Agro-Industrial Waste: Equilibrium Modelling, Thermodynamics and Mass Transfer Mechanisms of Cationic Dyes Adsorption onto Low-Cost Lignocellulosic Adsorbent. J. Taiwan Inst. Chem. Eng. 2019, 96, 439–452. https://doi.org/10.1016/J.JTICE.2018.12.014. es_ES
dc.description.references M. L. Mathew, A. Gopalakrishnan, C. T. Aravindakumar, Aravind, U. K. Low – Cost Multilayered Green Fiber for the Treatment of Textile Industry Waste Water. J. Hazard. Mater. 2019, 365, 297–305. https://doi.org/10.1016/J.JHAZMAT.2018.11.014. es_ES
dc.description.references B. Micó Vicent, F.M. Martinez Verdu, J.E. Gilabert Perez, Optimización de La Síntesis de Nanopigmentos de Origen Natural Para Biopolímeros Mediante El Uso Del Diseño de Experimentos. Doctoral Thesis. Universitat Politècnica de València 2015. http://hdl.handle.net/10251/59449 (22/11/2021). es_ES
dc.description.references P. Semeraro, V. Rizzi, P. Fini, S. Matera, P. Cosma, E. Franco, R. García, M. Ferrándiz, E. Núñez, J. A. Gabaldón, I. Fortea, E. Pérez, M. Ferrándiz, Interaction between Industrial Textile Dyes and Cyclodextrins. Dye. Pigment. 2015, 119, 84–94. https://doi.org/10.1016/J.DYEPIG. 2015.03.012. es_ES
dc.description.references D. Sana, S. Jalila, A Comparative Study of Adsorption and Regeneration with Different Agricultural Wastes as Adsorbents for the Removal of Methylene Blue from Aqueous Solution. Chinese J. Chem. Eng. 2017, 25 (9), 1282–1287. https://doi.org/10.1016/J.CJCHE.2017.01.012. es_ES
dc.description.references L. Sanchez, M. Ollier, R. P. Gonzalez, J. S. Alvarez, V. A. Nanocomposite Materials for Dyes Removal. Handb. Nanomater. Ind. Appl. 2018, 922–951. https://doi.org/10.1016/B978-0-12-813351-4.00053-5. es_ES
dc.description.references M. Erkanlı, L. Yilmaz, P. Z. Çulfaz-Emecen, U. Yetis, Brackish Water Recovery from Reactive Dyeing Wastewater via Ultrafiltration. J. Clean. Prod. 2017, 165, 1204–1214. https://doi.org/10.1016/J.JCLEPRO.2017.07.195. es_ES
dc.description.references M. Ogawa, R. Takee, Y. Okabe, Y. Seki, Bio-Geo Hybrid Pigment Clay-Anthocyanin Complex Which Changes Color Depending on the Atmosphere. Dye. Pigment. 2017, 139, 561–565. https://doi.org/10.1016/J.DYEPIG.2016.12.054. es_ES
dc.description.references F. López Arbeloa, V. Martínez Martínez, J. Bañuelos Prieto, I. López Arbeloa, Adsorption of Rhodamine 3B Dye on Saponite Colloidal Particles in Aqueous Suspensions. Langmuir 2002, 18 (7), 2658–2664. https://doi.org/10.1021/la0113163. es_ES
dc.description.references M. I. Carretero, M. Pozo, C. Sánchez, F. J. García, J. A. Medina, J. M. Bernabé, Comparison of Saponite and Montmorillonite Behaviour during Static and Stirring Maturation with Seawater for Pelotherapy. Appl. Clay Sci. 2007, 36 (1–3), 161–173. https://doi.org/10.1016/J.CLAY.2006.05.010. es_ES
dc.description.references D. Guillermin, T. Debroise, P. Trigueiro, L. de Viguerie, Rigaud, B. Morlet-Savary, F. Balme, S. Janot, J.-M. Tielens, F. Michot, L. Lalevee, J. Walter, P. Jaber, M. New Pigments Based on Carminic Acid and Smectites: A Molecular Investigation. Dye. Pigment. 2019, 160, 971–982. https://doi.org/10.1016/J.DYEPIG.2018.07.021. es_ES
dc.description.references E. M. Moujahid, R. Lahkale, H. Ouassif, F. Z. Bouragba, W. Elhatimi, New Organic Dye/Anionic Clay Hybrid Pigments: Preparation, Optical Properties and Structural Stability. Dye. Pigment. 2019, 162, 998–1004. https://doi.org/10.1016/J.DYEPIG.2018.11.021. es_ES
dc.description.references J.-Z. Yi, L.-M. Zhang, Removal of Methylene Blue Dye from Aqueous Solution by Adsorption onto Sodium Humate/Polyacrylamide/Clay Hybrid Hydrogels. Bioresour. Technol. 2008, 99 (7), 2182–2186. https://doi.org/10.1016/J.BIORTECH.2007.05.028. es_ES
dc.description.references R.A. Schoonheydt, L. Heughebaert, Clay Adsorbed Dyes: Methylene Blue on Laponite. Clay Miner. 1992, 27, 91–100,. es_ES
dc.description.references H. Mittal, R. Babu, A. A. Dabbawala, S. Stephen, S. Alhassan, M. Zeolite-Y Incorporated Karaya Gum Hydrogel Composites for Highly Effective Removal of Cationic Dyes. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 586, 124161. https://doi.org/10.1016/J.COLSURFA.2019.124161. es_ES
dc.description.references L. N. F. de Queiroga, D. B. França, F. Rodrigues, I. M. G. Santos, M. G. Fonseca, M. Jaber, Functionalized Bentonites for Dye Adsorption: Depollution and Production of New Pigments. J. Environ. Chem. Eng. 2019, 7 (5), 103333. https://doi.org/10.1016/J.JECE.2019.103333. es_ES
dc.description.references H. Laguna, S. Loera, I. A. Ibarra, E. Lima, M. A. Vera, V. Lara, Azoic Dyes Hosted on Hydrotalcite-like Compounds: Non-Toxic Hybrid Pigments. Microporous Mesoporous Mater. 2007, 98 (1–3), 234–241. https://doi.org/10.1016/j.micromeso.2006.09.009. es_ES
dc.description.references V. Rives, M. E. Pérez-Bernal, R. J. Ruano-Casero, I. Nebot-Díaz, Development of a Black Ceramic Pigment from Non Stoichiometric Hydrotalcites. J. Eur. Ceram. Soc. 2012, 32 (5), 975–987. https://doi.org/10.1016/j.jeurceramsoc.2011.11.033. es_ES
dc.description.references X. Yu, J. Wang, M. Zhang, L. Yang, J. Li, P. Yang, D. Cao, Synthesis, Characterization and Anticorrosion Performance of Molybdate Pillared Hydrotalcite/in Situ Created ZnO Composite as Pigment for Mg-Li Alloy Protection. Surf. Coatings Technol. 2008, 203 (3–4), 250–255. https://doi.org/10.1016/j.surfcoat.2008.08.074. es_ES
dc.description.references H. Chen, Z. Zhang, G. Zhuang, R. Jiang, A New Method to Prepare Maya Red, Pigment from Sepiolite and Basic Red 46. Appl. Clay Sci. 2019, 174, 38–46. https://doi.org/10.1016/J.CLAY.2019.03.023. es_ES
dc.description.references R. M. M. dos Santos, R. G. L. Gonçalves, V. R. L. Constantino, L. M. da Costa, L. H. M. da Silva, Tronto, J. Pinto, F. G. Removal of Acid Green 68:1 from Aqueous Solutions by Calcined and Uncalcined Layered Double Hydroxides. Appl. Clay Sci. 2013, 80–81, 189–195. https://doi.org/10.1016/j.clay.2013.04.006. es_ES
dc.description.references J. L. Bigman, Monitoring of Chemicals and Water. Handb. Silicon Wafer Clean. Technol. 2018, 619–657. https://doi.org/10.1016/B978-0-323-51084-4.00011-3. es_ES
dc.description.references M. M. F. Silva, M. M. Oliveira, M. C. Avelino, M. G. Fonseca, R. K. S. Almeida, E. C. Silva Filho, Adsorption of an Industrial Anionic Dye by Modified-KSF-Montmorillonite: Evaluation of the Kinetic, Thermodynamic and Equilibrium Data. Chem. Eng. J. 2012, 203, 259–268. https://doi.org/10.1016/j.cej.2012.07.009. es_ES
dc.description.references Huang, G.; He, J.; Zhang, X.; Feng, M.; Tan, Y.; Lv, C.; Huang, H.; Jin, Z. Applications of Lambert-Beer Law in the Preparation and Performance Evaluation of Graphene Modified Asphalt. Constr. Build. Mater. 2021, 273, 121582,. es_ES
dc.description.references J. L. Bigman, K. A. Reinhardt, Monitoring of Chemicals and Water Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-323-51084-4.00011-3. es_ES
dc.description.references C. Mensch, R. Chintala, D. Nawrocki, J. T. Blue, A. Bhambhani, Enabling Lyophilized Pneumococcal Conjugate Vaccines Through Formulation Design and Excipient Selection Suitable for A Multivalent Adjuvanted Vaccine. J. Pharm. Sci. 2020, 1–11. https://doi.org/10.1016/j.xphs.2020.10.038. es_ES
dc.description.references L. S. Castillo-Peinado, M. Calderón-Santiago, F. Priego-Capote, Lyophilization as Pre-Processing for Sample Storage in the Determination of Vitamin D3 and Metabolites in Serum and Plasma. Talanta 2021, 222 (September 2020). https://doi.org/10.1016/j.talanta.2020. 121692. es_ES
dc.description.references S. Maharjan, K. S. Liao, A. J. Wang, S. A. Curran, Highly Effective Hydrophobic Solar Reflective Coating for Building Materials: Increasing Total Solar Reflectance via Functionalized Anatase Immobilization in an Organosiloxane Matrix. Constr. Build. Mater. 2020, 243, 118189. https://doi.org/10.1016/j.conbuildmat.2020.118189. es_ES
dc.description.references Y. Liu, R. Li, J. Yu, F. Ni, Y. Sheng, A. Scircle, J. V. Cizdziel, Y. Zhou, Separation and Identification of Microplastics in Marine Organisms by TGA-FTIR-GC/MS: A Case Study of Mussels from Coastal China. Environ. Pollut. 2020, No. xxxx, 115946. https://doi.org/10.1016/j.envpol.2020.115946. es_ES
dc.description.references M. Umar, M. I. Ofem, A. S. Anwar, A. G. Salisu, Thermo Gravimetric Analysis (TGA) of PA6/G and PA6/GNP Composites Using Two Processing Streams. J. King Saud Univ. - Eng. Sci. 2020, No. xxxx. https://doi.org/10.1016/j.jksues.2020.09.003. es_ES
dc.description.references I. Corazzari, F. Turci, R. Nisticò, TGA Coupled with FTIR Gas Analysis to Quantify the Vinyl Alcohol Unit Content in Ethylene-Vinyl Alcohol Copolymer. Mater. Lett. 2021, 284, 129030. https://doi.org/10.1016/j.matlet.2020.129030. es_ES
dc.description.references H. Pálková, J. Madejová, M. Zimowska, E. Bielańska, Z. Olejniczak, L. Lityńska-Dobrzyńska, E. M. Serwicka, Laponite-Derived Porous Clay Heterostructures: I. Synthesis and Physicochemical Characterization. Microporous Mesoporous Mater. 2010, 127 (3), 228–236. https://doi.org/10.1016/j.micromeso.2009.07.019. es_ES
dc.description.references W. Zhuo, Y. Xie, M. T. Benson, J. Ge, R. D. Mariani, J. Zhang, XRD and SEM/EDS Characterization of Two Quaternary Fuel Alloys (U-2.5Mo-2.5Ti-5.0Zr and U-1.5Mo-1.5Ti-7.0Zr in Wt. %) for Fast Reactors. Mater. Charact. 2020, 170 (September), 110696. https://doi.org/10.1016/j.matchar.2020.110696. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem