- -

Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, Javier es_ES
dc.contributor.author Mansour, Peter es_ES
dc.contributor.author Verdeguer Sancho, Mercedes María es_ES
dc.contributor.author Baur, Peter es_ES
dc.date.accessioned 2023-10-30T19:03:13Z
dc.date.available 2023-10-30T19:03:13Z
dc.date.issued 2023-02 es_ES
dc.identifier.issn 1861-3829 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199010
dc.description.abstract [EN] The loss of important contact herbicides like paraquat opens opportunities for more potentially sustainable solutions demanded by consumers and organizations. Frequently, for adequate weed control, the alternatives to classical synthetic products need well-defined and executed labels and even more detailed use descriptions. One novel candidate with rare contact activity is a pelargonic acid ester of methyl polyethylene glycol (PA-MPEG) with advantages over free pelargonic acid (PA), such as reduced volatility and ease of formulation. Here, we report on the role of the application parameters such as spray volume, rate, sprayer set-up, and climate conditions for weed control with PA-MPEG. At a dose rate of 12.8 kg ae ha¿1 in a spray volume of 500 L ha¿1, control of Digitaria sanguinalis (L.) Scop. and Solanum nigrum L. was excellent. These values for product rate and spray volume are lower than applications with commercial PA herbicides, at equal or better efficacy. Coverage was too low at spray volumes of 100 to 200 L ha¿1, for adequate contact activity of both PA-MPEG and PA. Weed control was significantly increased when PA-MPEG application was made at lower boom height with reduced distance to weed canopy, or under warm and dry climate conditions. The results indicate the potential of PA-MPEG under optimal use conditions as a new contact herbicide in integrated weed management. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Plant Diseases and Protection es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pelargonic acid es_ES
dc.subject Weed canopy es_ES
dc.subject Coverage es_ES
dc.subject Climate conditions es_ES
dc.subject Application parameters es_ES
dc.subject.classification BOTANICA es_ES
dc.title Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s41348-022-00661-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Campos, J.; Mansour, P.; Verdeguer Sancho, MM.; Baur, P. (2023). Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid. Journal of Plant Diseases and Protection. 130(1):93-103. https://doi.org/10.1007/s41348-022-00661-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s41348-022-00661-0 es_ES
dc.description.upvformatpinicio 93 es_ES
dc.description.upvformatpfin 103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 130 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\470968 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Anderson DM, Swanton CJ, Hall JC, Mersey BG (1993) The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res 33:139–147. https://doi.org/10.1111/j.1365-3180.1993.tb01927.x es_ES
dc.description.references Barker AV, Prostak RG (2014) Management of vegetation by alternative practices in fields and roadsides. Int J Agron. https://doi.org/10.1155/2014/207828 es_ES
dc.description.references Baur P (1998) Mechanistic aspects of foliar penetration of agrochemicals and the effect of adjuvants. Recent Res Develop Agric Food Chem 2:809–837 es_ES
dc.description.references Baur P (1999) Surfactant effects on Cuticular penetration of neutral polar compounds: dependence on humidity and temperature. J Agric Food Chem 47:753–761 es_ES
dc.description.references Baur P, Schönherr J (1997) Penetration of an ethoxylated fatty alcohol surfactant across leaf cuticles as affected by concentration, additives, and humidity. J Plant Dis Prot 104:380–393 es_ES
dc.description.references Baur P, Pontzen R (2007) Basic features of plant surface wettability and deposit formation and the impact of adjuvants. In: Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals (ISAA), Columbus, Ohio, USA, ISSA Society, Wageningen, p 23 es_ES
dc.description.references Baur P, Bauer M, Bodelon L, Campos-Cuevas J, Giessler St, Hövelmann F (2019) Fatty acid derivatives for use as herbicides. Patent WO 2019/162484 A1. 2019 August. es_ES
dc.description.references Campos J, Verdeguer M, Baur P (2021) Capped polyethylene glycol esters of fatty acids as novel active principles for weed control. Pest Manag Sci 77:4648–4657. https://doi.org/10.1002/ps.6505 es_ES
dc.description.references Campos J, Bodelon L, Verdeguer M, Baur P (2022) Mechanistic aspects and effects of selected tank-mix partners on herbicidal activity of a novel fatty acid ester. Plants 11:279. https://doi.org/10.3390/plants11030279 es_ES
dc.description.references Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60. https://doi.org/10.1002/fes3.108 es_ES
dc.description.references Ciriminna R, Fidalgo A, Ilharco L, Pagliaro M (2019) Herbicides based on pelargonic acid: herbicides of the bioeconomy. Biofuels Bioprod Biorefin 13:1476–1482. https://doi.org/10.1002/bbb.2046 es_ES
dc.description.references Coleman R, Penner D (2006) Desiccant activity of short chain fatty acids. Weed Technol 20:410–415. https://doi.org/10.1614/WT-05-117R.1 es_ES
dc.description.references Coleman R, Penner D (2008) Organic acid enhancement of pelargonic acid. Weed Technol 22:38–41. https://doi.org/10.1614/WT-06-195.1 es_ES
dc.description.references Creech C, Henry R, Werle R, Sandell L, Hewitt A, Kruger G (2015) Performance of postemergence herbicides applied at different carrier volume rates. Weed Technol 29:611–624. https://doi.org/10.1614/WT-D-14-00101.1 es_ES
dc.description.references Crmaric I, Keller M, Krauss J, Delabays N (2018) Efficacy of natural fatty acid based herbicides on mixed weed stands. Jul Kühn Arch 458:328–333 es_ES
dc.description.references Bayer CropScience (2019) Integrated weed management–bayer crop science. https://iwm.bayer.com. Accessed 20 April 2019. es_ES
dc.description.references Dayan FE, St D (2010) Natural products for weed management in organic Farming in the USA. Outlooks Pest Manag 21:156–160. https://doi.org/10.1564/21aug02 es_ES
dc.description.references Dayan FE, Watson SB (2011) Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic Biochem Physiol 101:182–190 es_ES
dc.description.references Dinham B (2004) Why Paraquat should be banned. Outlooks Pest Manag 15:268–271 es_ES
dc.description.references EPA (2020) U.S. Environmental Protection Agency (EPA), Biopesticides Fact Sheet for Pelargonic Acid; Washington, DC. https://www.epa.gov/ [accessed 12 December 2020] es_ES
dc.description.references Eure P, Jordan D, Fisher L, York A (2013) Efficacy of herbicides when spray solution application is delayed. Int J Agron 2013:782486. https://doi.org/10.1155/2013/782486 es_ES
dc.description.references Eur-Lex (2020) Commission Delegated Regulation (EU) 2020/1068. European Parliament and the Council of the European Union. https://eur-lex.europa.eu/Accessed 12 December 2020. es_ES
dc.description.references Fogliatto S, Ferrero A, Vidotto F (2020) Chapter six - current and future scenarios of glyphosate use in Europe: are there alternatives? Adv Agron 163:219–278. https://doi.org/10.1016/bs.agron.2020.05.005 es_ES
dc.description.references Fukuda M, Fujimori T, Tsujino Y, Wakabayashi K, Böger P (2004) Phytotoxic activity of middle-chain fatty acids I: effects on cell constituents. Pesti Biochem Physiol 80:143–150 es_ES
dc.description.references Georgieva K, Sárvári E, Keresztes A (2010) Protection of thylakoids against combined light and drought by a lumenal substance in the resurrection plant Haberlea rhodopensis. Ann Bot 105:117–126. https://doi.org/10.1093/aob/mcp274 es_ES
dc.description.references Jeschke P, Witschel M, Kräamer W, Schirmer U (2019) Modern crop protection compounds, 3rd edn. Wiley-VCH Verlag GmbH, Weinheim, Germany, p 1784 es_ES
dc.description.references Kanatas P, Travlos I, Papastylianou P, Gazoulis I, Kakabouki I, Tsekoura A (2020) Yield, quality and weed control in soybean crop as affected by several cultural and weed management practices. Not Bot Hort Agrobot 48:329–341. https://doi.org/10.15835/nbha48111823 es_ES
dc.description.references Kanatas P, Antonopoulos N, Gazoulis I, Travlos IS (2021) Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci 69:704–718. https://doi.org/10.1017/wsc.2021.55 es_ES
dc.description.references Kleffmann group (2021). AMIS AgriGlobe database. https://kleffmann4you.kleffmann.com Accessed 08 December 2021 es_ES
dc.description.references Knoche M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163–178. https://doi.org/10.1016/0261-2194(94)90075-2 es_ES
dc.description.references Kraehmer H, Baur P (2013) Weed anatomy. John Wiley & Sons Ltd, West Sussex es_ES
dc.description.references Krauss J, Eigenmann M, Keller M (2020) Pelargonic acid for weed control in onions: factors affecting selectivity. Jul Kühn Arch 464:415–419 es_ES
dc.description.references Kudsk P, Kristensen JL (1992) Effect of environmental factors on herbicide performance. In: Proceedings of the first international weed control congress. Victoria, Australia: Weed Science Society of Victoria, p 173–186. es_ES
dc.description.references Larcher W (2003) Physiological plant. Ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer-Verlag, Berlin Heidelberg, p 514 es_ES
dc.description.references Lederer B, Fujimori T, Tsujino Y, Wakabayashi K, Böger P (2004) Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesti Biochem Physiol 80:151–156. https://doi.org/10.1016/j.pestbp.2004.06.010 es_ES
dc.description.references Marrone PG (2019) Pesticidal natural products – status and future potential. Pest Manag Sci 75:2325–2340. https://doi.org/10.1002/ps.5433 es_ES
dc.description.references Muñoz M, Torres-Pagán N, Peiró R, Guijarro R, Sánchez-Moreiras AM, Verdeguer M (2020) Phytotoxic effects of three natural compounds: pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in mediterranean crops. Agronomy 10:791. https://doi.org/10.3390/agronomy10060791 es_ES
dc.description.references Peterson M, McMaster S, Riechers D, Skelton J, Stahlman P (2016) 2,4-D Past, present, and future: a review. Weed Technol 30:303–345. https://doi.org/10.1614/WT-D-15-00131.1 es_ES
dc.description.references Pintar A, Svečnjak Z, Šoštarčić V, Lakić J, Barić K, Brzoja D, Šćepanović M (2021) Growth stage of Alopecurus myosuroides Huds. determines the efficacy of Pinoxaden. Plants 10:732. https://doi.org/10.3390/plants10040732 es_ES
dc.description.references de Ruiter H, Nijhuis E, Uffing AJM, Withagen JCM (1999) Phytotoxicity of different classes of adjuvants. AB-DLO. 609. https://edepot.wur.nl/339810 es_ES
dc.description.references Ruiz-Santaella J, Heredia A, Prado RD (2006) Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta 223:191–199. https://doi.org/10.1007/s00425-005-0075-1 es_ES
dc.description.references Schönherr J, Baur P (1994) Modelling penetration of plant cuticles by crop protection agents and effects of adjuvants on their rates of penetration. Pestic Sci 42:185–208 es_ES
dc.description.references Travlos I, Rapti E, Gazoulis I, Kanatas P, Tataridas A, Kakabouki I, Papastylianou P (2020) The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 10:1687. https://doi.org/10.3390/agronomy10111687 es_ES
dc.description.references Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616–617:255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309 es_ES
dc.description.references Webber CL, Taylor MJ, Shrefler JW (2014) Weed control in sweet bell pepper using sequential postdirected applications of pelargonic acid. HortTechnology 24:663–667. https://doi.org/10.21273/HORTTECH.24.6.663 es_ES
dc.description.references Webber CL, Shrefler JW (2006) Pelargonic acid weed control parameters. In: 103rd Annual International Conference of the American Society for Horticultural Science, New Orleans, LA, US, Hortscience, p 1034. es_ES
dc.description.references Zimdahl R (2018) Fundamentals of weed science, 5th edn. Academic Press, London, p 758 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem