- -

Compressed Lateral and anteroposterior Anatomical Systematic Sequences «CLASS»: compressed MRI sequences with assessed anatomical femoral and tibial ACL's footprints, a feasibility study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compressed Lateral and anteroposterior Anatomical Systematic Sequences «CLASS»: compressed MRI sequences with assessed anatomical femoral and tibial ACL's footprints, a feasibility study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Thürig, Grégoire es_ES
dc.contributor.author PANADERO-MORALES, R. es_ES
dc.contributor.author Giovannelli, Luca es_ES
dc.contributor.author Kocher, Franziska es_ES
dc.contributor.author Peris-Serra, José-Luis es_ES
dc.contributor.author Tannast, Moritz es_ES
dc.contributor.author Petek, Daniel es_ES
dc.date.accessioned 2023-10-30T19:04:01Z
dc.date.available 2023-10-30T19:04:01Z
dc.date.issued 2022-01-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199025
dc.description.abstract [EN] Purpose This study's main objective is to assess the feasibility of processing the MRI information with identified ACL-footprints into 2D-images similar to a conventional anteroposterior and lateral X-Ray image of the knee. The secondary aim is to conduct specific measurements to assess the reliability and reproducibility. This study is a proof of concept of this technique. Methods Five anonymised MRIs of a right knee were analysed. A orthopaedic knee surgeon performed the footprints identification. An ad-hoc software allowed a volumetric 3D image projection on a 2D anteroposterior and lateral view. The previously defined anatomical femoral and tibial footprints were precisely identified on these views. Several parameters were measured (e.g. coronal and sagittal ratio of tibial footprint, sagittal ratio of femoral footprint, femoral intercondylar notch roof angle, proximal tibial slope and others). The intraclass correlation coefficient (ICCs), including 95% confidence intervals (CIs), has been calculated to assess intraobserver reproducibility and interobserver reliability. Results Five MRI scans of a right knee have been assessed (three females, two males, mean age of 30.8 years old). Five 2D-"CLASS" have been created. The measured parameters showed a "substantial" to "almost perfect" reproducibility and an "almost perfect" reliability. Conclusion This study confirmed the possibility of generating "CLASS" with the localised centroid of the femoral and tibial ACL footprints from a 3D volumetric model. "CLASS" also showed that these footprints were easily identified on standard anteroposterior and lateral X-Ray views of the same patient, thus allowing an individual identification of the anatomical femoral and tibial ACL's footprints. es_ES
dc.description.sponsorship This work was supported by the University of Fribourg in Switzerland. The study was performed in collaboration with the "Instituto de Biomecanica"-the Polytechnic University of Valencia in Spain. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Journal of Experimental Orthopaedics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Knee es_ES
dc.subject ACL footprints es_ES
dc.subject MRI es_ES
dc.title Compressed Lateral and anteroposterior Anatomical Systematic Sequences «CLASS»: compressed MRI sequences with assessed anatomical femoral and tibial ACL's footprints, a feasibility study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40634-022-00445-3 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.description.bibliographicCitation Thürig, G.; Panadero-Morales, R.; Giovannelli, L.; Kocher, F.; Peris-Serra, J.; Tannast, M.; Petek, D. (2022). Compressed Lateral and anteroposterior Anatomical Systematic Sequences «CLASS»: compressed MRI sequences with assessed anatomical femoral and tibial ACL's footprints, a feasibility study. Journal of Experimental Orthopaedics. 9(1):1-7. https://doi.org/10.1186/s40634-022-00445-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40634-022-00445-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2197-1153 es_ES
dc.identifier.pmid 35020070 es_ES
dc.identifier.pmcid PMC8755866 es_ES
dc.relation.pasarela S\489179 es_ES
dc.contributor.funder Instituto de Biomecánica de Valencia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surgery, Sport Traumatol Arthrosc 6:2–12 es_ES
dc.description.references Amis AA, Zavras TD (1995) Isometricity and graft placement during anterior cruciate ligament reconstruction. Knee 2:5–17 es_ES
dc.description.references Araki D, Thorhauer E, Tashman S (2018) Three-dimensional isotropic magnetic resonance imaging can provide a reliable estimate of the native anterior cruciate ligament insertion site anatomy. Knee Surgery, Sport Traumatol Arthrosc Springer, Berlin Heidelberg 26:1311–1318 es_ES
dc.description.references Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: Is the tibial tunnel position most important? Am J Sports Med 39:366–373 es_ES
dc.description.references Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21 (discussion 21 2) es_ES
dc.description.references Byrne KJ, Hughes JD, Gibbs C, Vaswani R, Meredith SJ, Popchak A, Lesniak BP, Karlsson J, Irrgang JJ, Musahl V (2021) Non-anatomic tunnel position increases the risk of revision anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc https://doi.org/10.1007/s00167-021-06607-7. Epub ahead of print es_ES
dc.description.references Carbone A, Rodeo S (2017) Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J Orthop Res 35:397–405 es_ES
dc.description.references Cheung EC, DiLallo M, Feeley BT, Lansdown DA (2020) Osteoarthritis and ACL Reconstruction—Myths and Risks. Curr Rev Musculoskelet Med Current Reviews in Musculoskeletal Medicine 13:115–122 es_ES
dc.description.references Cho HJ, Kim TK, Kang SB, Do MU, Chang CB (2017) Variations in sagittal locations of anterior cruciate ligament tibial footprints and their association with radiographic landmarks: A human cadaveric study. BMC Musculoskelet Disord BMC Musculoskeletal Disorders 18:1–8 es_ES
dc.description.references Gomoll AH, Bach BR (2006) Managing Tunnel Malposition and Widening in Revision Anterior Cruciate Ligament Surgery. Oper Tech Sports Med 14:36–44 es_ES
dc.description.references Hart A, Sivakumaran T, Burman M, Powell T, Martineau PA (2018) A Prospective Evaluation of Femoral Tunnel Placement for Anatomic Anterior Cruciate Ligament Reconstruction Using 3-Dimensional Magnetic Resonance Imaging. Am J Sports Med 46:192–199 es_ES
dc.description.references Hwang MD, Piefer JW, Lubowitz JH (2012) Anterior Cruciate Ligament Tibial Footprint Anatomy: Systematic Review of the 21st Century Literature. Arthroscopy Elsevier Inc 28(5):728–734 es_ES
dc.description.references Iriuchishima T, Goto B (2021) Systematic Review of Surgical Technique and Tunnel Target Points and Placement in Anatomical Single-Bundle ACL Reconstruction. J Knee Surg 34:1531–1538 es_ES
dc.description.references Kumar S, Kumar A, Kumar R (2017) Accurate Positioning of Femoral and Tibial Tunnels in Single Bundle Anterior Cruciate Ligament Reconstruction Using the Indigenously Made Bernard and Hurtle Grid on a Transparency Sheet and C-arm. Arthrosc Tech Arthroscopy Association of North America 6:e757–e761 es_ES
dc.description.references Lipps DB, Wilson AM, Ashton-Miller JA, Wojtys EM (2012) Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med 40:2731–2736 es_ES
dc.description.references Majewski M, Susanne H, Klaus S (2006) Epidemiology of athletic knee injuries: A 10-year study. Knee 13:184–188 es_ES
dc.description.references Montgomery AA, Graham A, Evans PH, Fahey T (2002) Inter-rater agreement in the scoring of abstracts submitted to a primarycare research conference. BMC Health Serv Res 2:1–4 es_ES
dc.description.references Parkar AP, Adriaensen MEAPM, Vindfeld S, Solheim E (2017) The Anatomic Centers of the Femoral and Tibial Insertions of the Anterior Cruciate Ligament: A Systematic Review of Imaging and Cadaveric Studies Reporting Normal Center Locations. Am J Sports Med 45:2180–2188 es_ES
dc.description.references Piefer JW, Pflugner TR, Hwang MD, Lubowitz JH (2012) Anterior Cruciate Ligament Femoral Footprint Anatomy: Systematic Review of the 21st Century Literature. Arthroscopy Elsevier Inc 28(6):872–881 es_ES
dc.description.references Robinson J, Inderhaug E, Harlem T, Spalding T, Brown CH (2020) Anterior Cruciate Ligament Femoral Tunnel Placement: An Analysis of the Intended Versus Achieved Position for 221 International High-Volume ACL Surgeons. Am J Sports Med 48:1088–1099 es_ES
dc.description.references Scanlan SF, Lai J, Donahue JP, Andriacchi TP (2012) Variations in the three-dimensional location and orientation of the ACL in healthy subjects relative to patients after transtibial ACL reconstruction. J Orthop Res 30:910–918 es_ES
dc.description.references Scheffler SU, Maschewski K, Becker R, Asbach P (2018) In-vivo three-dimensional MR imaging of the intact anterior cruciate ligament shows a variable insertion pattern of the femoral and tibial footprints. Knee Surgery, Sport Traumatol Arthrosc Springer, Berlin Heidelberg 26:3667–3672 es_ES
dc.description.references Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods Nature Publishing Group 9:671–675 es_ES
dc.description.references Sivakumaran T, Jaffer R, Marwan Y, Hart A, Radu A, Burman M, Martineau PA, Powell T (2021) Reliability of Anatomic Bony Landmark Localization of the ACL Femoral Footprint Using 3D MRI. Orthop J Sport Med 9:1–6 es_ES
dc.description.references Söderman T, Wretling ML, Hänni M, Mikkelsen C, Johnson RJ, Werner S, Sundin A, Shalabi A (2020) Higher frequency of osteoarthritis in patients with ACL graft rupture than in those with intact ACL grafts 30 years after reconstruction. Knee Surgery, Sport Traumatol Arthrosc Springer, Berlin Heidelberg 28:2139–2146 es_ES
dc.description.references Swami VG, Cheng-Baron J, Hui C, Thompson RB, Jaremko JL (2015) Reliability of 3D localisation of ACL attachments on MRI: comparison using multi-planar 2D versus high-resolution 3D base sequences. Knee Surgery, Sport Traumatol Arthrosc 23:1206–1214 es_ES
dc.description.references Zavras TD, Race A, Amis AA (2005) The effect of femoral attachment location on anterior cruciate ligament reconstruction: Graft tension patterns and restoration of normal anterior-posterior laxity patterns. Knee Surgery, Sport Traumatol Arthrosc 13:92–100 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem