Mostrar el registro sencillo del ítem
dc.contributor.author | Thürig, Grégoire | es_ES |
dc.contributor.author | PANADERO-MORALES, R. | es_ES |
dc.contributor.author | Giovannelli, Luca | es_ES |
dc.contributor.author | Kocher, Franziska | es_ES |
dc.contributor.author | Peris-Serra, José-Luis | es_ES |
dc.contributor.author | Tannast, Moritz | es_ES |
dc.contributor.author | Petek, Daniel | es_ES |
dc.date.accessioned | 2023-10-30T19:04:01Z | |
dc.date.available | 2023-10-30T19:04:01Z | |
dc.date.issued | 2022-01-31 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199025 | |
dc.description.abstract | [EN] Purpose This study's main objective is to assess the feasibility of processing the MRI information with identified ACL-footprints into 2D-images similar to a conventional anteroposterior and lateral X-Ray image of the knee. The secondary aim is to conduct specific measurements to assess the reliability and reproducibility. This study is a proof of concept of this technique. Methods Five anonymised MRIs of a right knee were analysed. A orthopaedic knee surgeon performed the footprints identification. An ad-hoc software allowed a volumetric 3D image projection on a 2D anteroposterior and lateral view. The previously defined anatomical femoral and tibial footprints were precisely identified on these views. Several parameters were measured (e.g. coronal and sagittal ratio of tibial footprint, sagittal ratio of femoral footprint, femoral intercondylar notch roof angle, proximal tibial slope and others). The intraclass correlation coefficient (ICCs), including 95% confidence intervals (CIs), has been calculated to assess intraobserver reproducibility and interobserver reliability. Results Five MRI scans of a right knee have been assessed (three females, two males, mean age of 30.8 years old). Five 2D-"CLASS" have been created. The measured parameters showed a "substantial" to "almost perfect" reproducibility and an "almost perfect" reliability. Conclusion This study confirmed the possibility of generating "CLASS" with the localised centroid of the femoral and tibial ACL footprints from a 3D volumetric model. "CLASS" also showed that these footprints were easily identified on standard anteroposterior and lateral X-Ray views of the same patient, thus allowing an individual identification of the anatomical femoral and tibial ACL's footprints. | es_ES |
dc.description.sponsorship | This work was supported by the University of Fribourg in Switzerland. The study was performed in collaboration with the "Instituto de Biomecanica"-the Polytechnic University of Valencia in Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Journal of Experimental Orthopaedics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Knee | es_ES |
dc.subject | ACL footprints | es_ES |
dc.subject | MRI | es_ES |
dc.title | Compressed Lateral and anteroposterior Anatomical Systematic Sequences «CLASS»: compressed MRI sequences with assessed anatomical femoral and tibial ACL's footprints, a feasibility study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s40634-022-00445-3 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València | es_ES |
dc.description.bibliographicCitation | Thürig, G.; Panadero-Morales, R.; Giovannelli, L.; Kocher, F.; Peris-Serra, J.; Tannast, M.; Petek, D. (2022). Compressed Lateral and anteroposterior Anatomical Systematic Sequences «CLASS»: compressed MRI sequences with assessed anatomical femoral and tibial ACL's footprints, a feasibility study. Journal of Experimental Orthopaedics. 9(1):1-7. https://doi.org/10.1186/s40634-022-00445-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s40634-022-00445-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2197-1153 | es_ES |
dc.identifier.pmid | 35020070 | es_ES |
dc.identifier.pmcid | PMC8755866 | es_ES |
dc.relation.pasarela | S\489179 | es_ES |
dc.contributor.funder | Instituto de Biomecánica de Valencia | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surgery, Sport Traumatol Arthrosc 6:2–12 | es_ES |
dc.description.references | Amis AA, Zavras TD (1995) Isometricity and graft placement during anterior cruciate ligament reconstruction. Knee 2:5–17 | es_ES |
dc.description.references | Araki D, Thorhauer E, Tashman S (2018) Three-dimensional isotropic magnetic resonance imaging can provide a reliable estimate of the native anterior cruciate ligament insertion site anatomy. Knee Surgery, Sport Traumatol Arthrosc Springer, Berlin Heidelberg 26:1311–1318 | es_ES |
dc.description.references | Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: Is the tibial tunnel position most important? Am J Sports Med 39:366–373 | es_ES |
dc.description.references | Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21 (discussion 21 2) | es_ES |
dc.description.references | Byrne KJ, Hughes JD, Gibbs C, Vaswani R, Meredith SJ, Popchak A, Lesniak BP, Karlsson J, Irrgang JJ, Musahl V (2021) Non-anatomic tunnel position increases the risk of revision anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc https://doi.org/10.1007/s00167-021-06607-7. Epub ahead of print | es_ES |
dc.description.references | Carbone A, Rodeo S (2017) Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J Orthop Res 35:397–405 | es_ES |
dc.description.references | Cheung EC, DiLallo M, Feeley BT, Lansdown DA (2020) Osteoarthritis and ACL Reconstruction—Myths and Risks. Curr Rev Musculoskelet Med Current Reviews in Musculoskeletal Medicine 13:115–122 | es_ES |
dc.description.references | Cho HJ, Kim TK, Kang SB, Do MU, Chang CB (2017) Variations in sagittal locations of anterior cruciate ligament tibial footprints and their association with radiographic landmarks: A human cadaveric study. BMC Musculoskelet Disord BMC Musculoskeletal Disorders 18:1–8 | es_ES |
dc.description.references | Gomoll AH, Bach BR (2006) Managing Tunnel Malposition and Widening in Revision Anterior Cruciate Ligament Surgery. Oper Tech Sports Med 14:36–44 | es_ES |
dc.description.references | Hart A, Sivakumaran T, Burman M, Powell T, Martineau PA (2018) A Prospective Evaluation of Femoral Tunnel Placement for Anatomic Anterior Cruciate Ligament Reconstruction Using 3-Dimensional Magnetic Resonance Imaging. Am J Sports Med 46:192–199 | es_ES |
dc.description.references | Hwang MD, Piefer JW, Lubowitz JH (2012) Anterior Cruciate Ligament Tibial Footprint Anatomy: Systematic Review of the 21st Century Literature. Arthroscopy Elsevier Inc 28(5):728–734 | es_ES |
dc.description.references | Iriuchishima T, Goto B (2021) Systematic Review of Surgical Technique and Tunnel Target Points and Placement in Anatomical Single-Bundle ACL Reconstruction. J Knee Surg 34:1531–1538 | es_ES |
dc.description.references | Kumar S, Kumar A, Kumar R (2017) Accurate Positioning of Femoral and Tibial Tunnels in Single Bundle Anterior Cruciate Ligament Reconstruction Using the Indigenously Made Bernard and Hurtle Grid on a Transparency Sheet and C-arm. Arthrosc Tech Arthroscopy Association of North America 6:e757–e761 | es_ES |
dc.description.references | Lipps DB, Wilson AM, Ashton-Miller JA, Wojtys EM (2012) Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med 40:2731–2736 | es_ES |
dc.description.references | Majewski M, Susanne H, Klaus S (2006) Epidemiology of athletic knee injuries: A 10-year study. Knee 13:184–188 | es_ES |
dc.description.references | Montgomery AA, Graham A, Evans PH, Fahey T (2002) Inter-rater agreement in the scoring of abstracts submitted to a primarycare research conference. BMC Health Serv Res 2:1–4 | es_ES |
dc.description.references | Parkar AP, Adriaensen MEAPM, Vindfeld S, Solheim E (2017) The Anatomic Centers of the Femoral and Tibial Insertions of the Anterior Cruciate Ligament: A Systematic Review of Imaging and Cadaveric Studies Reporting Normal Center Locations. Am J Sports Med 45:2180–2188 | es_ES |
dc.description.references | Piefer JW, Pflugner TR, Hwang MD, Lubowitz JH (2012) Anterior Cruciate Ligament Femoral Footprint Anatomy: Systematic Review of the 21st Century Literature. Arthroscopy Elsevier Inc 28(6):872–881 | es_ES |
dc.description.references | Robinson J, Inderhaug E, Harlem T, Spalding T, Brown CH (2020) Anterior Cruciate Ligament Femoral Tunnel Placement: An Analysis of the Intended Versus Achieved Position for 221 International High-Volume ACL Surgeons. Am J Sports Med 48:1088–1099 | es_ES |
dc.description.references | Scanlan SF, Lai J, Donahue JP, Andriacchi TP (2012) Variations in the three-dimensional location and orientation of the ACL in healthy subjects relative to patients after transtibial ACL reconstruction. J Orthop Res 30:910–918 | es_ES |
dc.description.references | Scheffler SU, Maschewski K, Becker R, Asbach P (2018) In-vivo three-dimensional MR imaging of the intact anterior cruciate ligament shows a variable insertion pattern of the femoral and tibial footprints. Knee Surgery, Sport Traumatol Arthrosc Springer, Berlin Heidelberg 26:3667–3672 | es_ES |
dc.description.references | Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods Nature Publishing Group 9:671–675 | es_ES |
dc.description.references | Sivakumaran T, Jaffer R, Marwan Y, Hart A, Radu A, Burman M, Martineau PA, Powell T (2021) Reliability of Anatomic Bony Landmark Localization of the ACL Femoral Footprint Using 3D MRI. Orthop J Sport Med 9:1–6 | es_ES |
dc.description.references | Söderman T, Wretling ML, Hänni M, Mikkelsen C, Johnson RJ, Werner S, Sundin A, Shalabi A (2020) Higher frequency of osteoarthritis in patients with ACL graft rupture than in those with intact ACL grafts 30 years after reconstruction. Knee Surgery, Sport Traumatol Arthrosc Springer, Berlin Heidelberg 28:2139–2146 | es_ES |
dc.description.references | Swami VG, Cheng-Baron J, Hui C, Thompson RB, Jaremko JL (2015) Reliability of 3D localisation of ACL attachments on MRI: comparison using multi-planar 2D versus high-resolution 3D base sequences. Knee Surgery, Sport Traumatol Arthrosc 23:1206–1214 | es_ES |
dc.description.references | Zavras TD, Race A, Amis AA (2005) The effect of femoral attachment location on anterior cruciate ligament reconstruction: Graft tension patterns and restoration of normal anterior-posterior laxity patterns. Knee Surgery, Sport Traumatol Arthrosc 13:92–100 | es_ES |