Mostrar el registro sencillo del ítem
dc.contributor.author | Barbero-García, Inés | es_ES |
dc.contributor.author | Pierdicca, Roberto | es_ES |
dc.contributor.author | Paolanti, Marina | es_ES |
dc.contributor.author | Felicetti, Andrea | es_ES |
dc.contributor.author | Lerma, José Luis | es_ES |
dc.date.accessioned | 2023-11-03T19:01:52Z | |
dc.date.available | 2023-11-03T19:01:52Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.issn | 0263-2241 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199209 | |
dc.description.abstract | [EN] Three-dimensional data has a wide range of applications in medicine. For the particular case of cranial deformation in infants, it is becoming a common tool for evaluation. However, there is a need for low-cost solutions that provide accurate information even with uncoll aborative infants with ultrafast movement reactions. As cranial deformation is often linked to facial abnormalities, facial information is required for comprehensive evaluation. In this study, the integration of target-based close-range photogrammetry and facial landmark machine learning detection is carried out. The resulting tool is automatic and smartphone-based and provides 3D information of the head and face. This methodology opens a new path for the effective integration of machine learning and photogrammetry in medicine and, in particular, for overall head analysis. | es_ES |
dc.description.sponsorship | This work was supported by the Instituto de Salud Carlos III and European Regional Development Fund (FEDER) , project number PI18/00881. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Measurement | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | 3D data acquisition | es_ES |
dc.subject | Smartphone | es_ES |
dc.subject | Facial landmark detection | es_ES |
dc.subject | Plagiocephaly | es_ES |
dc.subject | Photogrammetry | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Combining machine learning and close-range photogrammetry for infant's head 3D measurement: A smartphone-based solution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.measurement.2021.109686 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/INSTITUTO DE SALUD CARLOS III//PI18%2F00881//ANALISIS Y MONITORIZACION NO INVASIVA Y DE BAJO COSTE DE LA DEFORMACION CRANEAL EN LACTANTES MEDIANTE FOTOGRAMETRIA 3D Y TELEFONOS INTELIGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica | es_ES |
dc.description.bibliographicCitation | Barbero-García, I.; Pierdicca, R.; Paolanti, M.; Felicetti, A.; Lerma, JL. (2021). Combining machine learning and close-range photogrammetry for infant's head 3D measurement: A smartphone-based solution. Measurement. 182:1-10. https://doi.org/10.1016/j.measurement.2021.109686 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.measurement.2021.109686 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 182 | es_ES |
dc.relation.pasarela | S\488645 | es_ES |
dc.contributor.funder | INSTITUTO DE SALUD CARLOS III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |