- -

Flujo de agua en el suelo bajo condiciones de simetría radial. Contraste entre modelos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flujo de agua en el suelo bajo condiciones de simetría radial. Contraste entre modelos

Mostrar el registro completo del ítem

Del Vigo, Á. (2023). Flujo de agua en el suelo bajo condiciones de simetría radial. Contraste entre modelos. Ingeniería del Agua. 27(3):169-181. https://doi.org/10.4995/ia.2023.19290

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199262

Ficheros en el ítem

Metadatos del ítem

Título: Flujo de agua en el suelo bajo condiciones de simetría radial. Contraste entre modelos
Otro titulo: Radial symmetry soil water front advance. Comparison among models
Autor: del Vigo, Ángel
Fecha difusión:
Resumen:
[EN] A review of some analytical models existing in the bibliography for the evolution of spherical symmetry bulb front advance is presented in this article. Surface drip irrigation is considered from a point (or quasi-point) ...[+]


[ES] En este artículo se presenta una revisión de algunos modelos analíticos y modelos analíticos simplificados existentes en la bibliografía para la evolución del frente de avance del flujo de agua en el suelo bajo ...[+]
Palabras clave: Darcy equation , Spherical symmetry , Analytical model , Trickle irrigation , Cuasi-point source , Ecuación de Darcy , Simetría esférica , Modelo analítico , Riego por goteo , Fuente cuasi-puntual
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.19290
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2023.19290
Tipo: Artículo

References

Ben Yosef, B., Sheikholslami, M.R. 1976. Distribution of water and ions in soils irrigated and fertilized from a trickle source. Soil. Sci. Soc. Am. J., 40, 575-582. https://doi.org/10.2136/sssaj1976.03615995004000040033x

Ben Asher, J., Charach, Ch., Zemel, A. 1986. Infiltration and water extraction from trickle source: the effective hemisphere model. Soil Sci Soc Am J., 50, 882-887. https://doi.org/10.2136/sssaj1986.03615995005000040010x

Brandt, A., Bresler, E., Diner, N., Ben-Asher, J., Heller, J., Goldberg, D. 1971. Infiltration from trickle source: I. mathematical model. Soil Sci Soc Am Proc., 35, 675-682. https://doi.org/10.2136/sssaj1971.03615995003500050018x [+]
Ben Yosef, B., Sheikholslami, M.R. 1976. Distribution of water and ions in soils irrigated and fertilized from a trickle source. Soil. Sci. Soc. Am. J., 40, 575-582. https://doi.org/10.2136/sssaj1976.03615995004000040033x

Ben Asher, J., Charach, Ch., Zemel, A. 1986. Infiltration and water extraction from trickle source: the effective hemisphere model. Soil Sci Soc Am J., 50, 882-887. https://doi.org/10.2136/sssaj1986.03615995005000040010x

Brandt, A., Bresler, E., Diner, N., Ben-Asher, J., Heller, J., Goldberg, D. 1971. Infiltration from trickle source: I. mathematical model. Soil Sci Soc Am Proc., 35, 675-682. https://doi.org/10.2136/sssaj1971.03615995003500050018x

Buckingham, E. 1907. Studies on the movement of soil moisture. Bull. 38. U.S. Dept.of Agr.Bureau of soils, Washington, D.C.

Carnahan, B. 1979. Cálculo numérico. Métodos y aplicaciones. Rueda ed. Madrid.

Chu, S.T. 1994. Green-Ampt analysis of wetting patterns for surface emitters. J. Irrig. Drain E., 120(2), 414-421. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:2(414)

Clothier, B.E., Scotter, D.R. 1982. Constant-flux infiltration from a hemispherical cavity. Soil. Sci. Soc. Am. J., 46, 696-700. https://doi.org/10.2136/sssaj1982.03615995004600040006x

Darcy, H. 1856. Les fontaines publiques de la ville de Dijon. Dalmont, Paris.

del Vigo, Á. 2020. Simulación del flujo del agua en el suelo en riego por goteo superficial, soluciones analíticas aproximadas, caracterización del suelo y diseño de los riegos. Tesis doctoral, Universidad Politécnica de Madrid. Madrid. https://doi.org/10.20868/UPM.thesis.63840

del Vigo, Á., Zubelzu, S., Juana, L. 2019a. Algoritmo para la resolución de la ecuación de Richards en 3-D para riego por goteo: Método, validación y resultados preliminares. XXXVII Congreso Nacional de Riegos. Don Benito. Spain. https://doi.org/10.17398/AERYD.2019.A06

del Vigo, Á., Zubelzu, S., Juana, L. 2019b. Study of water infiltration in soil by Richards equations in 3D: summary and methodology validation. 11th World Congress on Water Resources and Environment. Madrid. Spain. http://ewra.net/pages/EWRA2019_Proceedings.pdf

del Vigo, Á., Zubelzu, S., Juana, L. 2019c. Soluciones analíticas aproximadas bajo hipótesis de Green-Ampt desde fuentes semiesférica y circular en superficie. Jornadas Ingeniería del Agua (J.I.A). Toledo. Spain. https://oa.upm.es/65070/1/INVE_MEM_2019_324240.pdf

del Vigo, Á., Zubelzu, S., Juana, L. 2020. Numerical routine for soil dynamics from trickle irrigation. Applied Mathematical Modeling, 83, 371-385. https://doi.org/10.1016/j.apm.2020.01.058

del Vigo, Á., Zubelzu, S., Juana, L. 2021. Infiltration models and soil characterization for hemispherical and disc sources based on Green-Ampt assumptions. Journal of Hydrology, 595, 1259-1266. https://doi.org/10.1016/j.jhydrol.2021.125966

del Vigo, Á., Colimba, J., Juana, L., Rodriguez-Sinobas, L. 2023a. Numerical model for the simulation of soil water flow under root-absorption conditions. Application to tomato plant crop. Irrigation Sciences, 41, 141-154. https://doi.org/10.1007/s00271-022-00806-x

del Vigo, Á., Zubelzu, S., Juana, L. 2023b. Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico. Ingeniería del Agua, 27(2), 111-124. https://doi.org/10.4995/ia.2023.19328

Gardner, W.R. 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci., 85, 228. https://doi.org/10.1097/00010694-195804000-00006

Green, W.H., Ampt G.A. 1911. Studies in soil physic I: the flow of air and water through soils. Journal of Agricultural Science, 4, 1. https://doi.org/10.1017/S0021859600001441

Mualem,Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Journal, 12, 513. https://doi.org/10.1029/WR012i003p00513

Neuman, S.P. 1976. Wetting front pressure head in the infiltration model of Green and Ampt. Water Resources Research, 12, 564-565. https://doi.org/10.1029/WR012i003p00564

Philip, J.R. 1984. Travel times from buried and surface infiltration point sources. Water Resources Research, 20(7), 990-994. https://doi.org/10.1029/WR020i007p00990

Raats, P.A.C. 1971. Steady infiltration from point sources, cavities and basins. Soil Sci. Soc. Am. Proc., 35, 689-694. https://doi.org/10.2136/sssaj1971.03615995003500050020x

Rawls, W.J., Brakensiek, D.L., Soni, B. 1983. Agricultural management effects on soil water process. Part I: Soil water retention and Green and Ampt infiltration parameters. Trans. Amer. Soc. Agric. Engrs., 26(6), 1747-1752. https://doi.org/10.13031/2013.33837

Richards, L.A. 1931. Capillary conduction of liquids in porous medium. Journal of Applied Physics, 1, 318-333. https://doi.org/10.1063/1.1745010

Roth, R.L. 1974. Soil moisture distribution and wetting pattern from a point source. In Proceedings of 2nd international drip irrigation congress. California. EEUU. 246–251

Šimůnek, J., van Genuchten, M., Šejna, M. 2006. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual Version 1.0. University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic.

Taghavi, S.A., Marino, M.A., Rolston D.E. 1984. Infiltration from trickle irrigation source. J. Irrig. Drain Eng. Eng. ASCE, 110(4), 331-341. https://doi.org/10.1061/(ASCE)0733-9437(1984)110:4(331)

Warrick, A.W. 1974. Time-dependent linearized infiltration: I. Point source. Soil Sci. Soc. Amer. Proc., 34, 383. https://doi.org/10.2136/sssaj1974.03615995003800030008x

Warrick, A.W. y Lomen, D.O. 1976. Time-dependent linearized infiltration: III. Strip and disc sources. Soil Sci. Soc. Amer. Proc., 40, 639-643. https://doi.org/10.2136/sssaj1976.03615995004000050014x

Wooding, R.A. 1968. Steady infiltration from a shallow circular pond. Water Resources Research, 4, 1259-1273. https://doi.org/10.1029/WR004i006p01259

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem