- -

Evaluación de una paleta vegetal apta para el tratamiento de aguas grises ligeras en soluciones basadas en la naturaleza

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación de una paleta vegetal apta para el tratamiento de aguas grises ligeras en soluciones basadas en la naturaleza

Mostrar el registro completo del ítem

Aguirre-Álvarez, E.; Lizárraga-Mendiola, L.; Coronel-Olivares, C.; Tavizón-Pozos, JA.; Vázquez-Rodríguez, GA. (2023). Evaluación de una paleta vegetal apta para el tratamiento de aguas grises ligeras en soluciones basadas en la naturaleza. Ingeniería del Agua. 27(3):183-196. https://doi.org/10.4995/ia.2023.19554

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199267

Ficheros en el ítem

Metadatos del ítem

Título: Evaluación de una paleta vegetal apta para el tratamiento de aguas grises ligeras en soluciones basadas en la naturaleza
Otro titulo: Evaluation of a plant palette suited to nature-based solutions treating light greywater
Autor: Aguirre-Álvarez, Estefanía Lizárraga-Mendiola, Liliana Coronel-Olivares, Claudia Tavizón-Pozos, Jesús Andrés Vázquez-Rodríguez, Gabriela A.
Fecha difusión:
Resumen:
[EN] The aim of this work was to evaluate the performance of a plant palette for treating light greywater (LGW) in a nature-based solution (NbS). Different layers of filter media (soil, granular activated carbon, zeolite, ...[+]


[ES] El objetivo de este trabajo fue evaluar el desempeño de una paleta vegetal para tratar aguas grises ligeras (AGL) en una solución basada en la naturaleza (SbN). Se empacaron contenedores con varios materiales filtrantes ...[+]
Palabras clave: Domestic wastewater , Phytoremediation , Vascular plants , Circular economy , Decentralized system , Aguas residuales domésticas , Fitorremediación , Plantas vasculares , Economía circular , Sistema descentralizado
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.19554
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2023.19554
Código del Proyecto:
info:eu-repo/grantAgreement//UAEH/PAO-2022-1389/MX
Agradecimientos:
Estefanía Aguirre Álvarez agradece al Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT-México) la beca para realizar su posgrado. Los autores agradecen el apoyo brindado por el Proyecto PAO-2022-1389 UAEH y ...[+]
Tipo: Artículo

References

Aghakhani, A., Sayed-Farhad, M., Mostafazadeh-Fard, B. 2013. Desalination of saline water with single and combined adsorbents. Desalination and Water Treatment, 51, 1928-1935. https://doi.org/10.1080/19443994.2012.714731

Andrade, S.O., Oliveira, A.M.B.M., Silva, S.O., Coelho, L.F.O., Rosendo, T.F., Silva, A.F. 2022. Phytoremediation analysis with Portulaca oleracea L. in a hybrid system in the treatment of agroindustrial dairy effluents. https://doi.org/10.2139/ssrn.4181399

Apella, M.C., Araujo, P.Z. 2014. Microbiología del agua. Conceptos básicos. En: Tecnologías solares para la desinfección y descontaminación del agua. Universidad Nacional de San Martín, Buenos Aires, Argentina, 33-44. [+]
Aghakhani, A., Sayed-Farhad, M., Mostafazadeh-Fard, B. 2013. Desalination of saline water with single and combined adsorbents. Desalination and Water Treatment, 51, 1928-1935. https://doi.org/10.1080/19443994.2012.714731

Andrade, S.O., Oliveira, A.M.B.M., Silva, S.O., Coelho, L.F.O., Rosendo, T.F., Silva, A.F. 2022. Phytoremediation analysis with Portulaca oleracea L. in a hybrid system in the treatment of agroindustrial dairy effluents. https://doi.org/10.2139/ssrn.4181399

Apella, M.C., Araujo, P.Z. 2014. Microbiología del agua. Conceptos básicos. En: Tecnologías solares para la desinfección y descontaminación del agua. Universidad Nacional de San Martín, Buenos Aires, Argentina, 33-44.

APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22nd edition. American Public Health Association, American Water Works Association, Water Environment Federation, Washington D.C., EE. UU.

Aragón-Monter, R. 2014. Uso de carbón activado granular (CAG) para el tratamiento de los efluentes de la granja integral de policultivo de Tezontepec de Aldama, Hgo. Tesis de licenciatura, Universidad Autónoma del Estado de Hidalgo, México.

Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., Galvão, A., Pisoeiro, J., Rizzo, A., Masi, F. 2020. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the Total Environment 711, 134731. https://doi.org/10.1016/j.scitotenv.2019.134731

Brikké, F., Bredero, M. 2003. Linking technology choice with operation and maintenance in the context of community water supply and sanitation: a reference document for planners and project staff. World Health Organization. https://apps.who.int/iris/handle/10665/42538

Chowdhury, R.K., Abaya, J.S. 2018. An Experimental Study of Greywater Irrigated Green Roof Systems in an Arid Climate. The Journal of Water Management Modeling, 26, 1-10, https://doi.org/10.14796/JWMM.C437

Davamani, V., Parameshwari, C.I., Arulmani, S., John, J.E., Poornima, R. 2021. Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon zizanioides). Journal of Environmental Chemical Engineering, 9(4), 105528, https://doi.org/10.1016/j.jece.2021.105528

Dewi, N., Hadisoebroto, R., Fachrul, M. 2019. Removal of ammonia and phosphate parameters from greywater using Vetiveria zizanioides in subsurface-constructed wetland. Journal of Physics: Conference Series, 1402(3), 033012. https://doi.org/10.1088/1742-6596/1402/3/033012

Effendi, H., Arsy, B.N., Utomo, B.A., Darmawangsa, G.M., Wardiatno, Y. 2017. Ammonia removal of catfish (Clarias sp) cultivation wastewater using vetiver grass (Vetiveria zizanioides). Pollution Research, 36(3), 419-427.

Endres, E. D., Sasamori M.H., Cassanego, M., Droste, A. 2015. Biomonitoring of water genotoxicity in a Conservation Unit in the Sinos River Basin, Southern Brazil, using the Tradescantia micronucleus bioassay. Brazilian Journal of Biology, 75(2), 91-97, https://doi.org/10.1590/1519-6984.0713

Flores, J. 2018. Sistemas innovadores, jardinería y horticultura vertical en el IMTA. Instituto Mexicano de Tecnología del Agua, Coordinación de Riego y Drenaje, Subcoordinación de Ingeniería de Riego, México.

Friedler, E., Hadari, M. 2006. Economic feasibility of on-site greywater reuse in multi-storey buildings. Desalination, 190(1-3), 221-234, https://doi.org/10.1016/j.desal.2005.10.007

Ghaitidak, D.M., Yadav, K.D. 2013. Characteristics and treatment of greywater. Environmental Science and Pollution Research, 20, 2795- 2809, https://doi.org/10.1007/s11356-013-1533-0.

Ghamary, E., Mohajeri, Z. 2021. Efficiency of Cyperus alternifolius, Typha latifolia, and Juncus inflexus in the removal of nitrate from surface water. Journal of Water Supply: Research and Technology-AQUA, 70(5), 654-664, https://doi.org/10.2166/aqua.2021.103

Grieve, C., Suárez, D. 1997. Purslane (Portulaca oleracea L.): A halophytic crop for drainage water reuse systems. Plant and Soil, 192, 277-283. https://doi.org/10.1023/A:1004276804529

Hammer, O., Harper D.A.T., Ryan, P.D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

Huhn, L. 2015. Greywater treatment in sand and gravel filters. Low Tech Solution for Sustainable Wastewater Management. Manual for Design, Construction, Operation and Maintenance. United Nations Environment Programme & Global Programme of Action.

Imai, S., Shiraishi, A., Gamo, K., Watanabe, I., Okuhata, H., Miyasaka, H., Ikeda, K., Bamba, T., Hirata, K. 2007. Removal of Phenolic Endocrine Disruptors by Portulaca oleracea. Journal of Bioscience and Bioengineering, 103(5), 420-426, https://doi.org/10.1263/jbb.103.420

Khandare, R.V, Kabra, A.N., Kurade, M.B., Govindwar, S.P. 2011. Phytoremediation potential of Portulaca grandiflora hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172). Bioresource Technology, 102(12), 6774-6777. https://doi.org/10.1016/j.biortech.2011.03.094

Khandare, R.V., Watharkar, A.D., Kabra, A.N., Kachole, M.S., Govindwar, S.P. 2013. Development of a low-cost, phyto-tunnel system using Portulaca grandiflora and its application for the treatment of dye-containing wastewaters. Biotechnology Letters, 36(1), 47-55. https://doi.org/10.1007/s10529-013-1324-1

Masi, F., Bresciani, R., Rizzo, A., Edathoot, A., Patwardhan, N., Panse, D., Langergraber, G. 2016. Green walls for greywater treatment and recycling in dense urban areas: A case study in Pune. Journal of Water, Sanitation and Hygiene for Development, 6, 342-357. https://doi.org/10.2166/washdev.2016.019.

Morel, A., Diener, S. 2006. Greywater management in low and middle-income countries, review of different treatment systems for households or neighborhoods. Sandec Report No. 14/06, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Suiza.

Núñez, R.A., Meas Vong Y., Ortega-Borges, R., Olguín, E.J. 2004. Fitorremediación, fundamentos y aplicaciones. Ciencia, 55(3), 69-82.

Page, D., Bekele, E., Vanderzalm, J., Sidhu, J. 2018. Managed aquifer recharge (MAR) in sustainable urban water management. Water, 10(3), 239. https://doi.org/10.3390/w10030239

Pillai, J.S., Vijayan, N. 2012. Decentralized greywater treatment for nonpotable, reuse in a vertical flow constructed wetland. International Conference on Green Technologies (ICGT), December 18-20, Trivandrum, India, 58-63. https://doi.org/10.1109/ICGT.2012.6477948

Pradhan, S., Al-Ghamdi, S.G., Mackey, H.R. 2019. Greywater treatment by ornamental plants and media for an integrated green wall system. International Biodeterioration & Biodegradation, 145, 104792. https://doi.org/10.1016/j.ibiod.2019.104792

Prodanovic, V., McCarthy, D., Hatt, B., Deletic, A. 2019. Designing green walls for greywater treatment: The role of plants and operational factors on nutrient removal. Ecological Engineering, 130, 184-195. https://doi.org/10.1016/j.ecoleng.2019.02.019

Prodanovic, V., McCarthy, D., Hatt, B., Deletic, A. 2020. Green wall height and design optimization for effective greywater pollution treatment and reuse. Journal of Environmental Management, 261, 110173. https://doi.org/10.1016/j.jenvman.2020.110173

Ramírez, J.D. 2018. Evaluación del vetiver (Chrysopogon zizanioides) y la elefanta (Pennisetum purpureum) en la caracterización de humedales artificiales para el tratamiento de aguas residuales domésticas. Revista Científica en Ciencias Ambientales y Sostenibilidad, 4, 1-15.

Rezvantalab, S., Bahadori, F. 2015. Application of Natural Zeolites on Wastewater Treatment. Asian Journal of Agricultural Research, 9, 343-349. https://doi.org/10.3923/ajar.2015.343.349

Rinitha, P. 2022. Grey Water Treatment by Phytoremediation Technique-A Comparative Study using Vetiver Grass and Lemon Grass. International Journal of Engineering Research & Technology, 10(6), 101-106.

Rojas, M.Y., Purihuamán, C.N. 2018. Tratamiento de aguas residuales domésticas con la especie vetiver (Chrysopogon zizanioides) en humedales de flujo subsuperficial. Revista Tzhoecoen, 10(1), 13-19. https://doi.org/10.26495/rtzh1810.125751

Sasikala, S., Tanaka, N., Wah, H.W., Jinadasa, K.B.S.N. 2009. Effects of water level fluctuation on radial oxygen loss, root porosity, and nitrogen removal in subsurface vertical flow wetland mesocosms. Ecological Engineering, 35(3), 410-417. https://doi.org/10.1016/j.ecoleng.2008.10.003

SEMARNAT. 1998. Norma Oficial Mexicana NOM-003-SEMARNAT-1997, que establece los límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reúsen en servicios al público. Secretaría de Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, México, 21 de septiembre de 1998.

SEMARNAT. 2022. Norma Oficial Mexicana NOM-001-SEMARNAT-2021. Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación, 11 de marzo de 2022.

Suelee, A.L., Hasan, S.N.M.S., Kusin, F.M. 2017. Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal Contaminated Water. Water, Air & Soil Pollution, 228, 158. https://doi.org/10.1007/s11270-017-3349-x

Tariq, S.R, Iqbal, F., Safa, Y. 2017. An efficient of Sansevieria trifasciata plant as biosorbent for the treatment of metal contaminated industrial effluents. Baghdad Science Journal, 14, 189. https://doi.org/10.21123/bsj.2017.14.1.0189

Trejo-Bustillos, P.R. 2023. Uso de óxidos de Mn soportados en toba zeolítica para la descontaminación de aguas grises domiciliarias. Tesis de maestría, Universidad Autónoma del Estado de Hidalgo, México.

Truong, P., Hart, B. 2001. Vetiver system for wastewater treatment. Pacific Rim Vetiver Network Technical Bulletin No. 2001. 2001/21.

UICN. 2016. Estándar Global de Soluciones basadas en la Naturaleza (SbN). Unión Internacional para la Conservación de la Naturaleza, Gland, Suiza.

UNESCO. 2017. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Aguas residuales: El recurso desaprovechado. WWAP Programa Mundial de Evaluación de los Recursos Hídricos de las Naciones Unidas, París, Francia.

UNESCO. 2018. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2018. Soluciones basadas en la naturaleza para la gestión del agua. WWAP Programa Mundial de Evaluación de los Recursos Hídricos de las Naciones Unidas, París, Francia.

USEPA. 2004. EPA-625-R-04-108. Guidelines for Water Reuse. United States Environmental Protection Agency, Washington D.C., EE. UU.

Winston, R.J, Dorsey, J.D., Hunt, W.F. 2016. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Science of The Total Environment, 553(15), 83-95. https://doi.org/10.1016/j.scitotenv.2016.02.081

Zúñiga-Estrada, M.A. 2021. Tratamiento de la contaminación de escorrentías urbanas en una zona semiárida mediante la aplicación de infraestructura verde y azul. Tesis de doctorado, Universidad Autónoma del Estado de Hidalgo, México.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem