- -

Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tobar-Díaz, René es_ES
dc.contributor.author Gao, Yan es_ES
dc.contributor.author Mas, Jean François es_ES
dc.contributor.author Cambrón-Sandoval, Víctor Hugo es_ES
dc.date.accessioned 2023-11-06T12:57:13Z
dc.date.available 2023-11-06T12:57:13Z
dc.date.issued 2023-07-28
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/199305
dc.description.abstract [EN] Methodologies for land use and land cover (LULC) classification have demonstrated significant advances in recent years, such as the incorporation of machine learning (ML) classification techniques, which have gained popularity and acceptance of their capabilities. However, the lack of methodological consensus has led to a disorderly application of ML methods in the classification of LULC. Through the literature review, we identified some points in how the methods are being implemented as possible implications for the classification of LULC. For this review, only scientific articles published between 2000 and 2020 were analyzed that incorporated any of the following algorithms for LULC classification: K-nearest neighbor (KNN), random forest (RF), support vector machine (SVM), artificial neural network (ANN) and decision trees (DT). Using the results of the literature review, we were able to confirm the potential of the algorithms. We also identified areas for improvement in the application of machine learning to the classification of LULC. These areas include the integration of data sets, parameterization of algorithms, and evaluation of results. Consequently, we generated a selection of guidelines based on the recommendations of various authors that we consider will be useful for users interested in these methods. es_ES
dc.description.abstract [ES] Los métodos para la clasificación de uso y cobertura del suelo (UCS) han mostrado avances importantes en los últimos años, como la incorporación de las técnicas de aprendizaje automático (machine learning-ML) que han ganado popularidad y aceptación por sus resultados. Sin embargo, la falta de consensos metodológicos ha provocado una aplicación desordenada de los métodos ML en la clasificación de UCS. Por lo que a través de la revisión bibliográfica practicada se identificaron puntos de la forma en que se están implementando los métodos, así como posibles implicaciones en la clasificación de UCS al darse de esta manera. Para dicha revisión se utilizaron únicamente artículos científicos publicados entre el año 2000 al 2020 y que consideraran alguno de los siguientes algoritmos para la clasificación de UCS: k vecinos más cercanos (K-nearest neighbor-KNN), bosque aleatorio (random forest-RF), máquina de soporte de vectores (support vector machine-SVM), redes neuronales artificiales (artificial neural network-ANN) y árboles de decisión (decision trees-DT). A través de los resultados obtenidos en la revisión bibliográfica, se reafirma el potencial de los algoritmos y se identifican puntos de mejora para la aplicación de ML en la clasificación de UCS, especialmente en la integración de los conjuntos de datos, la parametrización de los algoritmos y la evaluación de los resultados, generando a su vez una selección de buenas prácticas a partir de las recomendaciones de diversos autores las cuales consideramos serán de utilidad para usuarios interesados en estos métodos. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Land cover es_ES
dc.subject Land use es_ES
dc.subject Random forest es_ES
dc.subject Support vector machine es_ES
dc.subject Artificial neural network es_ES
dc.subject Decision trees es_ES
dc.subject Machine learning es_ES
dc.subject Aprendizaje automático es_ES
dc.subject Uso del suelo es_ES
dc.subject Cobertura del suelo es_ES
dc.subject Bosque aleatorio es_ES
dc.subject Máquina de soporte de vectores es_ES
dc.subject Redes neuronales artificiales es_ES
dc.subject Árboles de decisión es_ES
dc.title Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica es_ES
dc.title.alternative Classification of land use and land cover through machine learning algorithms: a literature review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2023.19014
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Tobar-Díaz, R.; Gao, Y.; Mas, JF.; Cambrón-Sandoval, VH. (2023). Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica. Revista de Teledetección. (62):1-19. https://doi.org/10.4995/raet.2023.19014 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2023.19014 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 62 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\19014 es_ES
dc.description.references Abdel-Rahman, E.M., Mutanga, O., Adam, E., & Ismail, R. 2014. Detecting Sirex noctilio greyattacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 48-59. https://doi.org/10.1016/j.isprsjprs.2013.11.013 es_ES
dc.description.references Abdi, A.M. 2020. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, 57(1), 1-20. https://doi.org/10.1080/15481603.2019.1650447 es_ES
dc.description.references Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E.M. 2014. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 3440-3458. https://doi.org/10.1080/01431161.2014.903435 es_ES
dc.description.references Aguilera, M. 2020. Classication Of Land-Cover Through Machine Learning Algorithms For Fusion Of Sentinel-2a And Planetscope Imagery. 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), 246-253. https://doi.org/10.1109/LAGIRS48042.2020.9165632 es_ES
dc.description.references Alpaydin, E. 2014. Introduction to Machine Learning (3.a ed.). MIT Press. es_ES
dc.description.references Bashir, D., Montañez, G.D., Sehra, S., Segura, P.S., & Lauw, J. 2020. An Information-Theoretic Perspective on Overfitting and Underfitting. En M. Gallagher, N. Moustafa, & E. Lakshika (Eds.), AI 2020: Advances in Artificial Intelligence (pp. 347-358). Springer International Publishing. https://doi.org/10.1007/978-3-030-64984-5_27 es_ES
dc.description.references Belgiu, M., & Drăguţ, L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 es_ES
dc.description.references Bishop, C.M. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag. es_ES
dc.description.references Blum, A.L., & Langley, P. 1997. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5 es_ES
dc.description.references Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 es_ES
dc.description.references Campbell, J.B., & Wynne, R.H. 2011. Introduction to Remote Sensing, Fifth Edition. Guilford Publications. https://books.google.com.mx/books?id=NkLmDjSS8TsC es_ES
dc.description.references Card, D. 1982. Using map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48(3), 431-439. es_ES
dc.description.references Chakraborty, A., Sachdeva, K., & Joshi, P.K. 2016. Mapping long-term land use and land cover change in the central Himalayan region using a treebased ensemble classification approach. Applied Geography, 74, 136-150. https://doi.org/10.1016/j.apgeog.2016.07.008 es_ES
dc.description.references Chang, N.-B., & Bai, K. 2018. Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing (1.a ed.). CRC Press. https://doi.org/10.1201/9781315154602 es_ES
dc.description.references Chen, Y., Dou, P., & Yang, X. 2017. Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique. Remote Sensing, 9(10), 1055. https://doi.org/10.3390/rs9101055 es_ES
dc.description.references Christovam, L.E., Pessoa, G.G., Shimabukuro, M.H., & Galo, M.L.B.T. 2019. Land use and land cover classification using hyperspectral imagery: evaluating the performance of spectral angle mapper, support vector machine and random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 1841-1847. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1841-2019 es_ES
dc.description.references Congalton, R.G., & Green, K. 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3.a ed.). CRC Press. https://doi.org/10.1201/9780429052729 es_ES
dc.description.references Demirkan, D.Ç., Koz, A., & Düzgün, H.Ş. 2020. Hierarchical classification of Sentinel 2-a images for land use and land cover mapping and its use for the CORINE system. Journal of Applied Remote Sensing, 14(02), 1. https://doi.org/10.1117/1.JRS.14.026524 es_ES
dc.description.references Di Shi, & Yang, X. 2017. A Relative Evaluation of Random Forests for Land Cover Mapping in an Urban Area. Photogrammetric Engineering & Remote Sensing, 83(8), 541-552. https://doi.org/10.14358/PERS.83.8.541 es_ES
dc.description.references Dong, J., Metternicht, G., Hostert, P., Fensholt, R., & Chowdhury, R.R. 2019. Remote sensing and geospatial technologies in support of a normative land system science: Status and prospects. Current Opinion in Environmental Sustainability, 38, 44-52. https://doi.org/10.1016/j.cosust.2019.05.003 es_ES
dc.description.references Elatawneh, A., Kalaitzidis, C., Petropoulos, G.P., & Schneider, T. 2014. Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data. International Journal of Digital Earth, 7(3), 194-216. https://doi.org/10.1080/17538947.2012.671378 es_ES
dc.description.references Foody, G.M. 2004. Thematic map comparison. Photogrammetric Engineering & Remote Sensing, 70(5), 627-633. https://doi.org/10.14358/PERS.70.5.627 es_ES
dc.description.references Foody, G.M., & Mathur, A. 2004. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1-2), 107-117. https://doi.org/10.1016/j.rse.2004.06.017 es_ES
dc.description.references Ganbold, Ganchimeg, & Chasia, Stanley. 2017. Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification. International Journal of Knowledge Content Development & Technology, 7(1), 57-78. https://doi.org/10.5865/IJKCT.2017.7.1.057 es_ES
dc.description.references Ge, G., Shi, Z., Zhu, Y., Yang, X., & Hao, Y. 2020. Land use/cover classification in an arid desertoasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Global Ecology and Conservation, 22, e00971. https://doi.org/10.1016/j.gecco.2020.e00971 es_ES
dc.description.references Géron, A. 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media. es_ES
dc.description.references Gislason, P.O., Benediktsson, J.A., & Sveinsson, J.R. 2006. Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. https://doi.org/10.1016/j.patrec.2005.08.011 es_ES
dc.description.references Gualtieri, J.A., & Cromp, R.F. 1999. Support vector machines for hyperspectral remote sensing classification. R.J. Mericsko, Ed.; pp. 221-232. https://doi.org/10.1117/12.339824 es_ES
dc.description.references Halmy, M.W.A., & Gessler, P.E. 2015. The application of ensemble techniques for land-cover classification in arid lands. International Journal of Remote Sensing, 36(22), 5613-5636. https://doi.org/10.1080/01431161.2015.1103915 es_ES
dc.description.references Hastie, T., Tibshirani, R., Friedman, J.H., & Friedman, J.H. 2009. The elements of statistical learning: Data mining, inference, and prediction (Vol. 2). Springer. https://doi.org/10.1007/978-0-387-84858-7 es_ES
dc.description.references Herold, M., Latham, J.S., Di Gregorio, A., & Schmullius, C.C. 2006. Evolving standards in land cover characterization. Journal of Land Use Science, 1(2-4), 157-168. https://doi.org/10.1080/17474230601079316 es_ES
dc.description.references Heydari, S.S., & Mountrakis, G. 2018. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in perpixel classification accuracy using 26 Landsat sites. Remote Sensing of Environment, 204, 648-658. https://doi.org/10.1016/j.rse.2017.09.035 es_ES
dc.description.references Huang, C., Davis, L.S., & Townshend, J.R.G. 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725-749. https://doi.org/10.1080/01431160110040323 es_ES
dc.description.references Jamali, A. 2019. A fit-for-purpose algorithm for environmental monitoring based on maximum likelihood, support vector machine and random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W7, 25-32. https://doi.org/10.5194/isprs-archives-XLII-3-W7-25-2019 es_ES
dc.description.references Jamil, A., & Bayram, B. 2018. Tree Species Extraction and Land Use/Cover Classification From HighResolution Digital Orthophoto Maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 89-94. https://doi.org/10.1109/JSTARS.2017.2756864 es_ES
dc.description.references Jia, K., Liang, S., Wei, X., Yao, Y., Su, Y., Jiang, B., & Wang, X. 2014. Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data. Remote Sensing, 6(11), 11518-11532. https://doi.org/10.3390/rs61111518 es_ES
dc.description.references Jozdani, S.E., Johnson, B.A., & Chen, D. 2019. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sensing, 11(14), 1713. https://doi.org/10.3390/rs11141713 es_ES
dc.description.references Kamusoko, C. 2019. Remote Sensing Image Classification in R. Springer Singapore. https://doi.org/10.1007/978-981-13-8012-9 es_ES
dc.description.references Karakacan Kuzucu, A., & Bektas Balcik, F. 2017. Testing the potential of vegetation indices for land use/cover classification using high resolution data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W4, 279-283. https://doi.org/10.5194/isprs-annals-IV-4-W4-279-2017 es_ES
dc.description.references Kelleher, J.D., Namee, B.M., & D'Arcy, A. 2015. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press. es_ES
dc.description.references Knox, S.W. 2018. Machine learning: A concise introduction. John Wiley & Sons. https://doi.org/10.1002/9781119439868 es_ES
dc.description.references Koomen, E., Stillwell, J.(2007) Modelling land-use change en Koomen, E., Stillwell, J., Bakema, A., & Scholten, H.J. Modelling land-use change: Progress and applications (Vol. 90)(1-21). Springer Science & Business Media. https://doi.org/10.1007/1-4020-5648-6_1 es_ES
dc.description.references Kuhn, M., & Johnson, K. 2013. Applied Predictive Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3 es_ES
dc.description.references Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. 2014. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6(2), 964-983. https://doi.org/10.3390/rs6020964 es_ES
dc.description.references Lillesand, T., Kiefer, R.W., & Chipman, J. 2015. Remote Sensing and Image Interpretation. Wiley. es_ES
dc.description.references Lu, D., & Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456 es_ES
dc.description.references Marsland, S. 2014. Machine Learning: An Algorithmic Perspective (2.a ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17476 es_ES
dc.description.references Mas, J.F., & Flores, J.J. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617-663. https://doi.org/10.1080/01431160701352154 es_ES
dc.description.references Maxwell, A.E., Warner, T.A., & Fang, F. 2018. Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1080/01431161.2018.1433343 es_ES
dc.description.references Mfuka, C., Zhang, X., & Byamukama, E. 2019. Mapping and Quantifying White Mold in Soybean across South Dakota Using Landsat Images. Journal of Geographic Information System, 11(03), 331-346. https://doi.org/10.4236/jgis.2019.113020 es_ES
dc.description.references Müller, A.C., & Guido, S. 2016. Introduction to machine learning with Python: A guide for data scientists. O'Reilly Media, Inc. es_ES
dc.description.references Myburgh, G., & Niekerk, A. 2013. Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers. South African Journal of Geomatics. https://www.semanticscholar.org/paper/Effect-of-featuredimensionality-on-object-based-A-Myburgh-Niekerk/298f8341429248311f9a688741d0ee4344aa404c es_ES
dc.description.references Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. 2011. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830. es_ES
dc.description.references Petropoulos, G.P., Kalaitzidis, C., & Prasad Vadrevu, K. 2012. Support vector machines and objectbased classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers & Geosciences, 41, 99-107. https://doi.org/10.1016/j.cageo.2011.08.019 es_ES
dc.description.references Pontius, R.G., & Millones, M. 2011. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923 es_ES
dc.description.references Puertas, O.L., Brenning, A., & Meza, F.J. 2013. Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975-2010). Remote Sensing of Environment, 137, 112-123. https://doi.org/10.1016/j.rse.2013.06.003 es_ES
dc.description.references Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. 2015. Comparing Machine Learning Classifiers for ObjectBased Land Cover Classification Using Very High Resolution Imagery. Remote Sensing, 7(1), Art. 1. https://doi.org/10.3390/rs70100153 es_ES
dc.description.references Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E., & Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015 es_ES
dc.description.references R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/. es_ES
dc.description.references Ramezan, C.A., Warner, T.A., Maxwell, A.E., & Price, B.S. 2021. Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data. Remote Sensing, 13(3), Art. 3. https://doi.org/10.3390/rs13030368 es_ES
dc.description.references Rana, V.K., & Venkata Suryanarayana, T.M. 2020. Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. https://doi.org/10.1016/j.rsase.2020.100351 es_ES
dc.description.references Richards, J.A. 2013. Remote sensing digital image analysis: An introduction (Fifth edition). Springer. https://doi.org/10.1007/978-3-642-30062-2 es_ES
dc.description.references Saini, R., & Ghosh, S.K. 2018. Exploring capabilities of sentinel-2 for vegetation mapping using random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, 1499-1502. https://doi.org/10.5194/isprs-archives-XLII-3-1499-2018 es_ES
dc.description.references Shalev-Shwartz, S., & Ben-David, S. 2014. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press. https://doi.org/10.1017/CBO9781107298019 es_ES
dc.description.references Shih, H., Stow, D.A., & Tsai, Y.H. 2019. Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. International Journal of Remote Sensing, 40(4), 1248-1274. https://doi.org/10.1080/01431161.2018.1524179 es_ES
dc.description.references Syifa, M., Park, S.J., & Lee, C.W. 2020. Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques. Engineering, 6(8), 919-926. https://doi.org/10.1016/j.eng.2020.07.001 es_ES
dc.description.references Szuster, B.W., Chen, Q., & Borger, M. 2011. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525-532. https://doi.org/10.1016/j.apgeog.2010.11.007 es_ES
dc.description.references Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. 2020. LandUse Land-Cover Classification by Machine Learning Classifiers for Satellite Observations-A Review. Remote Sensing, 12(7), 1135. https://doi.org/10.3390/rs12071135 es_ES
dc.description.references Tassi, A., & Vizzari, M. 2020. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sensing, 12(22), 3776. https://doi.org/10.3390/rs12223776 es_ES
dc.description.references Thanh Noi, P., & Kappas, M. 2017. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors, 18(2), 18. https://doi.org/10.3390/s18010018 es_ES
dc.description.references Tso, B., & Mather, P.M. 2009. Classification methods for remotely sensed data (2nd ed). CRC Press. es_ES
dc.description.references Thomas, I.L., Ching, N.P., Benning, V.M., & D'aguanno, J.A. 1987. Review Article A review of multi-channel indices of class separability. International Journal of Remote Sensing, 8(3), 331-350. https://doi.org/10.1080/01431168708948645 es_ES
dc.description.references Vélez-Alvarado, D.A., & Álvarez-Mozos, J. 2020. Clasificación de usos y cubiertas del suelo y análisis de cambios en los alrededores de la Reserva Ecológica Manglares Churute (Ecuador) mediante una serie de imágenes Sentinel-1. Revista de Teledetección, 56, 131. https://doi.org/10.4995/raet.2020.14099 es_ES
dc.description.references Wilson, R.A., & Keil, F.C. (Eds.). 1999. The MIT encyclopedia of the cognitive sciences. MIT Press. https://doi.org/10.7551/mitpress/4660.001.0001 es_ES
dc.description.references Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., Liu, S., Yu, L., Wang, X., Zhu, P., Li, X., Xu, Y., Li, C., Fu, W., Li, X., Li, W., Liu, C., Cong, N., Zhang, H., … Gong, P. 2014. Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 35(13), 4573-4588. https://doi.org/10.1080/01431161.2014.930206 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem