Mostrar el registro sencillo del ítem
dc.contributor.author | Simó-Martí, Marina | es_ES |
dc.contributor.author | Martínez, Beatriz | es_ES |
dc.contributor.author | Gilabert, María Amparo | es_ES |
dc.date.accessioned | 2023-11-06T13:25:24Z | |
dc.date.available | 2023-11-06T13:25:24Z | |
dc.date.issued | 2023-07-28 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/199316 | |
dc.description.abstract | [EN] Ecosystems degradation has increased in recent decades and climate change is expected to increase the risk of such processes in the coming years, especially in arid and semi-arid ecosystems. The purpose of this work is to characterize the state of the terrestrial ecosystems of the Spanish mainland and the Balearic Islands through the temporal analysis of the variable RUE (Rain Use Efficiency) during the period 2004-2018. Annual RUE images have been calculated as the quotient between annual gross primary production (GPP) and annual cumulative precipitation (PPT) in a 1 km spatial resolution, and the values have been later normalized. The annual GPP is derived from the daily GPP, obtained using an optimization of the Monteith model and the PPT from daily precipitation images, which are computed by applying a kriging to the data from AEMet network stations. Temporal analysis of the RUE has been made by calculating the slope from a Mann-Kendall test and Sen-Theil method. RUE has been analyzed at three levels of study: at regional level, by vegetation types and at pixel level. The results have shown a negative trend of the normalized RUE (between -0.05 and -0.25 year-1) for most of the area, for the 9 classes of vegetation (the forest classes being the ones that have presented the steepest slopes) and in 5 of the 8 ecosystems analyzed at pixel level. A decline in the RUE indicates some degree of degradation in vegetation cover. From the analysis of the results it has been extracted that the interannual variability of the RUE is largely mediated by precipitation, presenting a negative correlation. On the other hand, it has been observed that GPP has experienced a progressive increase in recent years known as greening process. | es_ES |
dc.description.abstract | [ES] La degradación de los ecosistemas se ha intensificado en las últimas décadas y se prevé que el cambio climático incremente su riesgo, sobre todo en los ecosistemas áridos y semiáridos. El objetivo de este trabajo es la caracterización del estado de los ecosistemas terrestres del territorio español peninsular y las Islas Baleares a través del análisis temporal de la variable RUE (Rain Use Efficiency) durante el periodo 2004-2018. Las imágenes de RUE anual se han calculado como el cociente entre la producción primaria bruta (GPP) anual y la precipitación acumulada (PPT) anual a una resolución espacial de 1 km, y posteriormente se han normalizado los valores. La GPP anual se deriva de la GPP diaria, obtenida por medio de datos satelitales (método de Monteith) y la PPT a partir de las imágenes de precipitación diaria, que proceden de aplicar una interpolación espacial kriging a los datos de las estaciones de la red de AEMet. El análisis temporal de la RUE se ha realizado calculando su pendiente con el test de Mann-Kendall y el método de Sen-Theil. La RUE se ha analizado a tres niveles de estudio: a nivel regional, por tipos de vegetación y a nivel de píxel. Los resultados han mostrado una tendencia negativa de la RUE normalizada (entre -0,05 y -0,25 año–1) para la mayoría del territorio, para las 9 clases de vegetación (siendo las clases forestales las que han presentado las pendientes más acusadas) y en 5 de los 8 ecosistemas analizados a nivel de píxel. Un declive en la RUE indica cierta degradación en la cubierta vegetal. Del análisis de los resultados se ha extraído que la variabilidad interanual de la RUE se encuentra mediada en gran parte por la precipitación (correlación negativa). Se ha observado que la GPP ha experimentado en los últimos años un incremento progresivo conocido como greening. | es_ES |
dc.description.sponsorship | El presente trabajo se ha realizado con una Ayuda de colaboración en la investigación para estudiantes de la Universitat de València durante el curso 2020-2021. Este trabajo también se ha realizado, en parte, gracias a la ayuda PID2020-118036RB-I00 financiada por MCIN/AEI/10.13039/501100011033 y por “FEDER Una manera de hacer Europa”. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | RUE | es_ES |
dc.subject | GPP | es_ES |
dc.subject | Ecosystems degradation | es_ES |
dc.subject | Annual precipitation | es_ES |
dc.subject | Degradación de los ecosistemas | es_ES |
dc.subject | Precipitación anual | es_ES |
dc.title | Caracterización del estado de los ecosistemas terrestres a través de las variaciones interanuales de RUE (Rain Use Efficiency) | es_ES |
dc.title.alternative | Characterization of terrestrial ecosystems state based on interannual variations of RUE (Rain Use Efficiency) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2023.19980 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118036RB-I00/ES/CAMBIOS EN LOS ECOSISTEMAS E INTERCAMBIOS DE CARBONO MEDIANTE DATOS DE OBSERVACION DE LA TIERRA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Simó-Martí, M.; Martínez, B.; Gilabert, MA. (2023). Caracterización del estado de los ecosistemas terrestres a través de las variaciones interanuales de RUE (Rain Use Efficiency). Revista de Teledetección. (62):71-88. https://doi.org/10.4995/raet.2023.19980 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2023.19980 | es_ES |
dc.description.upvformatpinicio | 71 | es_ES |
dc.description.upvformatpfin | 88 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 62 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\19980 | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Bai, Y., Wu, J., Xing, Q., Pan, Q., Huang, J., Yang, D., Han, X., 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89(8), 2140-2153. https://doi.org/10.1890/07-0992.1 | es_ES |
dc.description.references | Burkey, J. Mann-Kendall Taub-b with Sen's Method (enhanced). En MATLAB Central File Exchange. Último acceso, 8 de Octubre, 2021, https://www.mathworks.com/matlabcentral/fileexchange/11190-mann-kendall-tau- b-with-sen-s-method-enhanced | es_ES |
dc.description.references | Cañizares, M., Moreno, A., Sánchez-Ruiz, S., Gilabert, M., 2017. Variabilidad de la eficiencia en el uso del carbono a partir de datos MODIS. Revista de Teledetección, 48, 1-12. https://doi.org/10.4995/raet.2017.7044 | es_ES |
dc.description.references | Chen, Z., Wang, W., Yu, Z., Xia, J., Schwartz, F., 2020. The collapse points of increasing trend of vegetation rain-use efficiency under droughts. Environmental Research Letters, 15. https://doi.org/10.1088/1748-9326/abb332 | es_ES |
dc.description.references | Chopra, K., Leemans, R., Kumar, P., Simons, H., 2005. Ecosystems and human well-being: policy responses. En W. (. Analysis), The millennium ecosystem assessment series vol. 3 (Vol. 3). Washington D.C.: Island Press. | es_ES |
dc.description.references | Dardel, C., Kergoat, L., Hiernaux, P., Grippa, M., Mougin, E., Ciais, P., Nguyen, C., 2014. Rain-Use-Efficiency: What it Tells us about the Conflicting Sahel Greening and Sahelian Paradox. Remote Sensing, 6, 3446-3474. https://doi.org/10.3390/rs6043446 | es_ES |
dc.description.references | Fensholt, R., Rasmussen, K., 2011. Analysis of trends in the Sahelian 'rain-use efficiency' using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sensing of Environment, 115, 438-451. https://doi.org/10.1016/j.rse.2010.09.014 | es_ES |
dc.description.references | Gilabert, A., Moreno, A., Maselli, F., Martínez, B., Chiesi, M., Shánchez-Ruiz, S., . . . Carrara, A., 2015. Daily GPP estimates in Mediterranean ecosystems by combining remote sensing and meteorological data. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 184-197. https://doi.org/10.1016/j.isprsjprs.2015.01.017 | es_ES |
dc.description.references | Holm, A., Cridland, S., Roderick, M., 2003. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sensing of Environment, 85, 145-158. https://doi.org/10.1016/S0034-4257(02)00199-2 | es_ES |
dc.description.references | Huang, F., & Xu, S., 2016. Spatio-Temporal Variations of Rain-Use Efficiency in the West of Songliao Plain, China. Sustainability, 8(308). https://doi.org/10.3390/su8040308 | es_ES |
dc.description.references | Huxman, T., Smith, M., Fay, P., Knapp, A., Shaw, R., Lolk, M., . . . Williams, D., 2004. Convergence across biomes to a common rain-use efficiency. Nature, 429, 651-654. https://doi.org/10.1038/nature02561 | es_ES |
dc.description.references | IPCC, 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. | es_ES |
dc.description.references | Keenan, T.F., Colin Prentice, I., Canadell, J.G., Williams, C.A., Wang, H., Raupach, M., Collatz, G.J., 2016. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications 7, 13428. https://doi.org/10.1038/ncomms13428 | es_ES |
dc.description.references | Kendall, M., 1985. Rank correlation methods (4th Edition ed.). London: Charles Griffin. | es_ES |
dc.description.references | Le Houérou, H. N., 1984. Rain use efficiency - A unifying concept in arid-land ecology. Journal of Arid Environments, 7, 213-247. https://doi.org/10.1016/S0140-1963(18)31362-4 | es_ES |
dc.description.references | Mann, H., 1945. Non-parametric tests against trend. Econometrica, 13, 245-259. https://doi.org/10.2307/1907187 | es_ES |
dc.description.references | Martínez, B., Gilabert, M. 2009. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, 113, 1823-1842. https://doi.org/10.1016/j.rse.2009.04.016 | es_ES |
dc.description.references | Martínez, B., Sánchez-Ruiz, S., Campos-Taberner, M., García-Haro, F.J., Gilabert, MA. 2022. Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sensing, 14(6),1310. https://doi.org/10.3390/rs14061310 | es_ES |
dc.description.references | McKee, T., Doesken, N., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. En: Proceedings of the 8th Conference on Applied Climatology. Boston: American Meteorological Society, pp. 179-184. | es_ES |
dc.description.references | Pan, N., Feng, X., Fu, B., Wang, S., Ji, F., Pan, S., 2018. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 214, 59-72. https://doi.org/10.1016/j.rse.2018.05.018 | es_ES |
dc.description.references | Paniagua, L., García-Martin, A., Moral, F., Rebollo, F., 2019. Aridity in the Iberian Peninsula (1960-2017): distribution, tendencies, and changes. Theoretical and Applied Climatology, 138, 811-830. https://doi.org/10.1007/s00704-019-02866-0 | es_ES |
dc.description.references | Pérez-Hoyos, A., García-Haro, J., San-Miguel-Ayanz, J., 2012. A methodology to generate a synergetic land-cover map by fusion of different land-cover products. International Journal of Applied Earth Observation and Geoinformation, 19, 72-87. https://doi.org/10.1016/j.jag.2012.04.011 | es_ES |
dc.description.references | Ponce-Campos, G., Moran, S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T., . . . Bosch, D., 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494, 349-353. https://doi.org/10.1038/nature11836 | es_ES |
dc.description.references | Sánchez-Ruiz, S., Martínez, B., Campos-Taberner, M., García-Haro, F., Gilabert, M., 2019. Análisis de tendencia en la GPP anual sobre la España peninsular. XVIII Congreso de la Asociación Española de Teledetección, (pp. 249-252). Valladolid. | es_ES |
dc.description.references | Sen, P., 1968. Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63, 1379-1389. https://doi.org/10.1080/01621459.1968.10480934 | es_ES |
dc.description.references | Sun, J., Zhou, T., Du, W., Wei, Y., 2019. Precipitation mediates the temporal dynamics of net primary productivity and precipitation use efficiency in China's northern and southern forests. Annals of Forest Science, 76(92). https://doi.org/10.1007/s13595-019-0876-1 | es_ES |
dc.description.references | Tang, X., Li, H., Desai, A., Nagy, Z., Luo, J., Kolb, T., . . . Ammann, C., 2014. How is water-use efficiency of terrestrial ecosystems distributed and changing on earth? Scientific Reports, 4(7483). https://doi.org/10.1038/srep07483 | es_ES |
dc.description.references | Vicente-Serrano, S., Gouveia, C., Camarero, J., Beguería, S., Trigo, R., López-Moreno, J., . . . Lorenzo-Lacruz, J. (2013). Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. U.S.A., 110(1), 52-7. https://doi.org/10.1073/pnas.1207068110 | es_ES |
dc.description.references | Weng, Q., 2018. Remote Sensing Time Series Image Processing. Boca Raton: CRC Press. https://doi.org/10.1201/9781315166636 | es_ES |
dc.description.references | Yan, L., Luo, Y., Sherry, R., Bell, J., Zhou, X., Xia, J. 2014. Rain use efficiency as affected by climate warming and biofuel harvest: results from a 12-year field experiment. GCB Bioenergy, 6, 556-565. https://doi.org/10.1111/gcbb.12081 | es_ES |
dc.description.references | Zhang, X., Wang, J., Wu, C., Kuca, K., 2020. The spatial distribution patterns of rainfall use efficiency (RUE) of evergreen coniferous forests in Chinese subtropical zone. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 492-502. https://doi.org/10.15835/nbha48111767 | es_ES |
dc.description.references | Zhu, Z., Piao, S., Myneni, R., Huang, M., Zeng, Z., Canadell, J., . . . Arneth, A., 2016. Greening of the Earth and its drivers. Nature Climate Change, 6, 791-795. https://doi.org/10.1038/nclimate3004 | es_ES |