- -

Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches

Mostrar el registro completo del ítem

Adams, C.; Alvarez, V.; Arazi, L.; Arnquist, I.; Azevedo, C.; Bailey, K.; Ballester Merelo, FJ.... (2021). Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches. Journal of High Energy Physics (Online). (8):1-24. https://doi.org/10.1007/JHEP08(2021)164

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199375

Ficheros en el ítem

Metadatos del ítem

Título: Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches
Autor: Adams, C. Alvarez, V. Arazi, L. Arnquist, I.J. Azevedo, C.D.R. Bailey, K. Ballester Merelo, Francisco José Benlloch-Rodriguez, J. M. Borges, F. I. G. M. Byrnes, N. Carcel, S. Carrión, J.V. Cebrian, S. Church, E. Conde, C. A. N. Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Toledo Alarcón, José Francisco
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Fecha difusión:
Resumen:
[EN] The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 nu beta beta) decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version ...[+]
Palabras clave: Dark Matter and Double Beta Decay (experiments)
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of High Energy Physics (Online). (eissn: 1029-8479 )
DOI: 10.1007/JHEP08(2021)164
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/JHEP08(2021)164
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C41/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C41/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/
info:eu-repo/grantAgreement/EC/FP7/339787/EU
info:eu-repo/grantAgreement/DOE//DE-SC0019223/
info:eu-repo/grantAgreement/EC/H2020/674896/EU
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/
info:eu-repo/grantAgreement/EC/H2020/690575/EU
info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/
info:eu-repo/grantAgreement/EC/H2020/740055/EU
info:eu-repo/grantAgreement/DOE//DE-SC0019054/
info:eu-repo/grantAgreement/EC/H2020/877040/EU
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/
info:eu-repo/grantAgreement/EC/H2020/877041/EU
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2019%2F049/
info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FFIS-NUC%2F2525%2F2014/PT
info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/
info:eu-repo/grantAgreement/MCIU//MDM-2016-0692//Programa Maria de Maetzu/
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04559%2F2020/PT
info:eu-repo/grantAgreement/MINECO//CEX2018-000867-S/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-1-R/ES/CONSTRUCCION OPERACION E I+D+I PARA EL EXPERIMENTO NEXT EN EL LSC/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//100010434/
info:eu-repo/grantAgreement/MINECO//RYC-2015-18820/ES/RYC-2015-18820/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FPI19%2F11690012/
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
[-]
Agradecimientos:
The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and ...[+]
Tipo: Artículo

References

S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE]. [+]
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

M.J. Dolinski, A.W.P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and Prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219 [arXiv:1902.04097] [INSPIRE].

J. Engel and J. Menéndez, Status and Future of Nuclear Matrix Elements for Neutrinoless Double-Beta Decay: A Review, Rept. Prog. Phys. 80 (2017) 046301 [arXiv:1610.06548] [INSPIRE].

S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].

S.M. Bilenky and C. Giunti, Neutrinoless double-beta decay: A brief review, Mod. Phys. Lett. A 27 (2012) 1230015 [arXiv:1203.5250] [INSPIRE].

J.J. Gómez-Cadenas, J. Martín-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The Search for neutrinoless double beta decay, Riv. Nuovo Cim. 35 (2012) 29 [arXiv:1109.5515] [INSPIRE].

KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [Addendum ibid. 117 (2016) 109903] [arXiv:1605.02889] [INSPIRE].

GERDA collaboration, Final Results of GERDA on the Search for Neutrinoless Double-β Decay, Phys. Rev. Lett. 125 (2020) 252502 [arXiv:2009.06079] [INSPIRE].

A. Caldwell, M. Ettengruber, A. Merle, O. Schulz and M. Totzauer, Global Bayesian analysis of neutrino mass data, Phys. Rev. D 96 (2017) 073001 [arXiv:1705.01945] [INSPIRE].

APPEC Committee collaboration, Double Beta Decay APPEC Committee Report, arXiv:1910.04688 [INSPIRE].

NEXT collaboration, NEXT-100 Technical Design Report (TDR): Executive Summary, 2012 JINST 7 T06001 [arXiv:1202.0721] [INSPIRE].

NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP 05 (2016) 159 [arXiv:1511.09246] [INSPIRE].

D.R. Nygren, Detecting the barium daughter in 136Xe 0-νββ decay using single-molecule fluorescence imaging techniques, J. Phys. Conf. Ser. 650 (2015) 012002 [INSPIRE].

B.J.P. Jones, A.D. McDonald and D.R. Nygren, Single Molecule Fluorescence Imaging as a Technique for Barium Tagging in Neutrinoless Double Beta Decay, 2016 JINST 11 P12011 [arXiv:1609.04019] [INSPIRE].

A.D. McDonald et al., Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging, Phys. Rev. Lett. 120 (2018) 132504 [arXiv:1711.04782] [INSPIRE].

P. Thapa et al., Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay, Sci. Rep. 9 (2019) 15097 [arXiv:1904.05901] [INSPIRE].

I. Rivilla et al., Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments, Nature 583 (2020) 48 [INSPIRE].

D. Nygren, High-pressure xenon gas electroluminescent TPC for 0νββ-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [INSPIRE].

NEXT collaboration, Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth. A 708 (2013) 101 [arXiv:1211.4474] [INSPIRE].

NEXT collaboration, Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment, 2013 JINST 8 P04002 [arXiv:1211.4838] [INSPIRE].

NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [arXiv:1306.0471] [INSPIRE].

NEXT collaboration, Characterisation of NEXT-DEMO using xenon Kα X-rays, 2014 JINST 9 P10007 [arXiv:1407.3966] [INSPIRE].

NEXT collaboration, First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP 01 (2016) 104 [arXiv:1507.05902] [INSPIRE].

NEXT collaboration, The Next White (NEW) Detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE].

NEXT collaboration, Calibration of the NEXT-White detector using 83mKr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE].

NEXT collaboration, Initial results on energy resolution of the NEXT-White detector, 2018 JINST 13 P10020 [arXiv:1808.01804] [INSPIRE].

NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE].

NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, JHEP 10 (2019) 052 [arXiv:1905.13141] [INSPIRE].

NEXT collaboration, Measurement of radon-induced backgrounds in the NEXT double beta decay experiment, JHEP 10 (2018) 112 [arXiv:1804.00471] [INSPIRE].

NEXT collaboration, Radiogenic Backgrounds in the NEXT Double Beta Decay Experiment, JHEP 10 (2019) 051 [arXiv:1905.13625] [INSPIRE].

A.A.L. Villalpando et al., Improving the light collection efficiency of silicon photomultipliers through the use of metalenses, 2020 JINST 15 P11021 [arXiv:2007.06678] [INSPIRE].

R. Felkai et al., Helium-Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs, Nucl. Instrum. Meth. A 905 (2018) 82 [arXiv:1710.05600] [INSPIRE].

NEXT collaboration, Electroluminescence TPCs at the Thermal Diffusion Limit, JHEP 01 (2019) 027 [arXiv:1806.05891] [INSPIRE].

NEXT collaboration, Electron Drift and Longitudinal Diffusion in High Pressure Xenon-Helium Gas Mixtures, 2019 JINST 14 P08009 [arXiv:1902.05544] [INSPIRE].

NEXT collaboration, Low-diffusion Xe-He gas mixtures for rare-event detection: Electroluminescence Yield, JHEP 04 (2020) 034 [arXiv:1906.03984] [INSPIRE].

National Nuclear Data Center, Information extracted from the NuDat 2 database (version 2.8), https://www.nndc.bnl.gov/nudat2/.

M. Haffke et al., Background Measurements in the Gran Sasso Underground Laboratory, Nucl. Instrum. Meth. A 643 (2011) 36 [arXiv:1101.5298] [INSPIRE].

NEXT collaboration, Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment, 2015 JINST 10 P05006 [arXiv:1411.1433] [INSPIRE].

NEXT collaboration, Radiopurity assessment of the energy readout for the NEXT double beta decay experiment, 2017 JINST 12 T08003 [arXiv:1706.06012] [INSPIRE].

N. Abgrall et al., The Majorana Demonstrator radioassay program, Nucl. Instrum. Meth. A 828 (2016) 22 [arXiv:1601.03779] [INSPIRE].

I.J. Arnquist, C. Beck, M.L. di Vacri, K. Harouaka and R. Saldanha, Ultra-low radioactivity Kapton and copper-Kapton laminates, Nucl. Instrum. Meth. A 959 (2020) 163573 [arXiv:1910.04317] [INSPIRE].

nEXO collaboration, nEXO Pre-Conceptual Design Report, arXiv:1805.11142 [INSPIRE].

V.A. Kudryavtsev, Muon simulation codes MUSIC and MUSUN for underground physics, Comput. Phys. Commun. 180 (2009) 339 [arXiv:0810.4635] [INSPIRE].

Borexino collaboration, Modulations of the Cosmic Muon Signal in Ten Years of Borexino Data, JCAP 02 (2019) 046 [arXiv:1808.04207] [INSPIRE].

SNO collaboration, Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory, Phys. Rev. D 80 (2009) 012001 [arXiv:0902.2776] [INSPIRE].

J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. Thesis, Universitat de València (2015).

J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Meth. A 835 (2016) 186 [INSPIRE].

O.A. Ponkratenko, V.I. Tretyak and Y.G. Zdesenko, The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei, Phys. Atom. Nucl. 63 (2000) 1282 [nucl-ex/0104018] [INSPIRE].

G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

J.J. Gómez-Cadenas et al., Sense and sensitivity of double beta decay experiments, JCAP 06 (2011) 007 [arXiv:1010.5112] [INSPIRE].

NEXT collaboration, Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment, JHEP 01 (2021) 189 [arXiv:2009.10783] [INSPIRE].

NEXT collaboration, Mitigation of backgrounds from cosmogenic 137Xe in xenon gas experiments using 3He neutron capture, J. Phys. G 47 (2020) 075001 [arXiv:2001.11147] [INSPIRE].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem