Mostrar el registro sencillo del ítem
dc.contributor.author | Hamidzadeh, Seyed Mohamad | es_ES |
dc.contributor.author | Rezaei, Mohsen | es_ES |
dc.contributor.author | Ranjbar-Bourani, Mehdi | es_ES |
dc.date.accessioned | 2023-11-07T09:48:46Z | |
dc.date.available | 2023-11-07T09:48:46Z | |
dc.date.issued | 2023-07-31 | |
dc.identifier.uri | http://hdl.handle.net/10251/199412 | |
dc.description.abstract | [EN] In this paper, modelling of a three-level chaotic supply chain network. This model has the uncertainty of the retailer in the manufacturer. An adaptive neural fuzzy method has been proposed to synchronize the two chaotic supply chain networks. To train adaptive neural fuzzy controller, first, a nonlinear feedback control method is designed. Then, using Lyapanov theory, it is proved that the nonlinear feedback controller can reduce the synchronization error to zero in a finite time. The simulation results show that the proposed neural fuzzy controller architecture well controls the synchronization of the two chaotic supply chain networks. In the other part of the simulation, a comparison is made between the performance of the nonlinear controller and the adaptive neural fuzzy. Also, in the simulation results, the controller signal is depicted. This signal indicates that the cost of implementation in the real world is not high and is easily implemented. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | International Journal of Production Management and Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Supply chain | es_ES |
dc.subject | Chaotic | es_ES |
dc.subject | Synchronization | es_ES |
dc.subject | ANFIS | es_ES |
dc.title | Chaos synchronization for a class of uncertain chaotic supply chain and its control by ANFIS | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ijpme.2023.18139 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Hamidzadeh, SM.; Rezaei, M.; Ranjbar-Bourani, M. (2023). Chaos synchronization for a class of uncertain chaotic supply chain and its control by ANFIS. International Journal of Production Management and Engineering. 11(2):113-126. https://doi.org/10.4995/ijpme.2023.18139 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ijpme.2023.18139 | es_ES |
dc.description.upvformatpinicio | 113 | es_ES |
dc.description.upvformatpfin | 126 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2340-4876 | |
dc.relation.pasarela | OJS\18139 | es_ES |
dc.description.references | Abdullah, H.A., Abdullah, H.N., & Mahmoud Al-Jawher, W.A. (2019). A hybrid chaotic map for communication security applications, Int J Commun Syst., 33(4), e4236. https://doi.org/10.1002/dac.4236 | es_ES |
dc.description.references | Aghababa, M.P., & Aghababa, H.P. (2013). Chaos synchronization of gyroscopes using an adaptive robust finite-time controller, Journal of Mechanical Science and Technology, 27(3), 909–916. https://doi.org/10.1007/s12206-013-0106-y | es_ES |
dc.description.references | Ahmad, I., & Shafiq, M. (2020). Robust adaptive anti-synchronization control of multiple uncertain chaotic systems of different orders, Automatika, 61(3), 396–414. https://doi.org/10.1080/00051144.2020.1765115 | es_ES |
dc.description.references | Anne, K.R., Chedjou, J.C. & Kyamakya, K. (2009). Bifurcation analysis and synchronisation issues in a threeechelon supply chain, International Journal of Logistics: Research and Applications, 12(5), 347-362. https://doi.org/10.1080/13675560903181527 | es_ES |
dc.description.references | Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible New Strange Attractors with Spiral Structure, Commun. Math. Phys. 79, 573–579. https://doi.org/10.1007/BF01209312 | es_ES |
dc.description.references | Behinfaraz, R., Ghaemi, S., Khanmohammadi, S., & Badamchizadeh, M.A. (2020). Fuzzy-Based Impulsive Synchronization of Different Complex Networks with Switching Topology and Time-Varying Dynamic, Int. J. Fuzzy Syst., 22, 2565–2576. https://doi.org/10.1007/s40815-020-00950-6 | es_ES |
dc.description.references | Chen, Y.J., Chou, H.G., Wang, W.J., Tsai, S.H., Tanaka, K., Wang, H.O., Wang, K.C. (2020). A polynomial-fuzzy-modelbased synchronization methodology for the multi-scroll Chen chaotic secure communication system, Engineering Applications of Artificial Intelligence, 87, 103251. https://doi.org/10.1016/j.engappai.2019.103251 | es_ES |
dc.description.references | Dantas, W.G., & Gusso, A. (2018). Analysis of the Chaotic Dynamic of MEMS/NEMS Doubly Clamped Beam Resonators with Two-Sided Electrodes, International Journal of Bifurcation and Chaos, 28(10), 1850122. https://doi.org/10.1142/S0218127418501225 | es_ES |
dc.description.references | Göksu, A., Kocamaz, U.E., & Uyaroğlu,Y. (2014). Synchronization and Control of Chaos in Supply Chain Management, Computers & Industrial Engineering, 86, 107–115. https://doi.org/10.1016/j.cie.2014.09.025 | es_ES |
dc.description.references | Hamidzadeh, S.M., Esmaelzadeh, R. (2014). Control and Synchronization Chaotic Satellite using Active Control. International Journal of Computer Applications (0975–8887), 94(10), May 2014. https://doi.org/10.5120/16380-5887 | es_ES |
dc.description.references | Hamidzadeh, S.M., & Yaghoobi, M. (2015). Chaos control of permanent magnet synchronous motors using single feedback control. In 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI) (pp. 325–329). IEEE. https://doi.org/10.1109/KBEI.2015.7436066 | es_ES |
dc.description.references | Hamidzadeh, S., Rezaei, M., & Ranjbar-Bourani, M. (2022a). A new dynamical behaviour modeling for a four-level supply chain: control and synchronization of hyperchaotic. Journal of Applied Research on Industrial Engineering, 9(2), 288–301. | es_ES |
dc.description.references | Hamidzadeh, S.M., Rezaei, M., & Ranjbar-Buorani, M. (2022b). Control and Synchronization of The Hyperchaotic Closedloop Supply Chain Network by PI Sliding Mode Control. IJIEPR, 33(4), 1–13. | es_ES |
dc.description.references | Heidari, H., Alibakhshi, A., & Azarboni, H.R. (2020). Chaotic Motion of a Parametrically Excited Dielectric Elastomer, International Journal of Applied Mechanics, 12(3), 2050033. https://doi.org/10.1142/S1758825120500337 | es_ES |
dc.description.references | Khan, M.H., Siddique, M., Khan, Z.H., Raza, M.T., & Hashmi, M.U. (2020). Robust Synchronization of Chaotic Nonlinear Systems Subjected to Input Saturation by Employing Nonlinear Observers-Based Chaos Synchronization Methodology, Arabian Journal for Science and Engineering, 45, 6849–6863. https://doi.org/10.1007/s13369-020-04436-3 | es_ES |
dc.description.references | Kilger, C. (2000). The Definition of a Supply Chain Project. In: Stadtler, H., Kilger, C. (eds) Supply Chain Management and Advanced Planning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04215-1_13 | es_ES |
dc.description.references | Kocamaz, U.E., Taşkın, H., Uyaroğlu, Y., & Göksu, A. (2016). Control and synchronization of chaotic supply chains using intelligent approaches. Computers & Industrial Engineering, 102, 476–487. https://doi.org/10.1016/j.cie.2016.03.014 | es_ES |
dc.description.references | Korneev, I.A., Semenov, V.V., Slepnev, A.V., & Vadivasova, T.E. (2020). Complete synchronization of chaos in systems with nonlinear inertial coupling, Chaos, Solitons and Fractals, 142, 110459. https://doi.org/10.1016/j.chaos.2020.110459 | es_ES |
dc.description.references | Kumar, S., Matouk, A.E., Chaudhary, H., & Kant, S. (2021). Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques. International Journal of Adaptive Control and Signal Processing, 35(4), 484–497. https://doi.org/10.1002/acs.3207 | es_ES |
dc.description.references | Lei, Z., Li, Y.J., & Xu, Y.Q. (2006). Chaos Synchronization of Bullwhip Effect in a Supply Chain, 13th International Conference on Management Science and Engineering, ICMSE’06, IEEE, Lille, France, pp. 557–560. IEEE. https://doi.org/10.1109/ICMSE.2006.313955 | es_ES |
dc.description.references | Li, M., Chen, H., & Li, X. (2020). Synchronization Analysis of Complex Dynamical Networks Subject to Delayed ImpulsiveDisturbances, Complexity, Volume 2020, Article ID 5285046, 12 pages. https://doi.org/10.1155/2020/5285046 | es_ES |
dc.description.references | Lorenz, E.N. (1963). Deterministic Non-periodic Flow. Journal of the atmospheric science, 20, 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 | es_ES |
dc.description.references | Mohadeszadeh, M., & Pariz, N. (2020). An application of adaptive synchronization of uncertain chaotic system in secure communication systems, International Journal of Modelling and Simulation, 42(1), 143–152. https://doi.org/10.1080/02286203.2020.1848281 | es_ES |
dc.description.references | Mondal, S. (2019). A new supply chain model and its synchronization behavior, Chaos, Solitons and Fractals, 123, 140–148. https://doi.org/10.1016/j.chaos.2019.03.027 | es_ES |
dc.description.references | Mu, X., Yan, Z., Yu, Y., Yan, H., Han, D. (2020). A tunable self-mixing chaotic laser based on high frequency electro-optic modulation, Optics and Laser Technology, 127, 106172. https://doi.org/10.1016/j.optlastec.2020.106172 | es_ES |
dc.description.references | Norouzi Nav, H., Jahed Motlagh, M.R. & Makui, A. (2016). Robust controlling of chaotic behavior in supply chain networks, Journal of the Operational Research Society, https://doi.org/10.1057/s41274-016-0112-4 | es_ES |
dc.description.references | Norouzi Nav, H., Jahed Motlagh, M.R., & Makui, A. (2018). Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretical approach, Journal of industrial and management optimization, 14(3), 1123–1141. https://doi.org/10.3934/jimo.2018002 | es_ES |
dc.description.references | Ouannas, A., Karouma, A., Grassi, G., Pham, V. T., & Luong, V. S. (2020). A novel secure communications scheme based on chaotic modulation, recursive encryption and chaotic masking, Alexandria Engineering Journal, 60(1), 1873–1884. https://doi.org/10.1016/j.aej.2020.11.035 | es_ES |
dc.description.references | Pecora, L.M., & Carroll, T.L. (1997). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821–824. https://doi.org/10.1103/PhysRevLett.64.821 | es_ES |
dc.description.references | Peng, Y., Wu, J., Wen, S., Feng, Y., Tu, Z., & Zou, L. (2020). A New Supply Chain System and Its Impulsive Synchronization, Complexity, Volume 2020, Article ID 2414927, 9 pages. https://doi.org/10.1155/2020/2414927 | es_ES |
dc.description.references | Sadaoui, D., Boukabou, A., Merabtine, N., & Benslama, M. (2011). Predictive synchronization of chaotic satellites systems, Expert Systems with Applications, 38, 9041–9045. https://doi.org/10.1016/j.eswa.2011.01.117 | es_ES |
dc.description.references | Shukla, M.K., & Sharma, B.B. (2017). Backstepping based stabilization and synchronization of a class of fractional order chaotic systems. Chaos, Solitons & Fractals, 102, 274–284. https://doi.org/10.1016/j.chaos.2017.05.015 | es_ES |
dc.description.references | Xu, X., Lee, S.D., Kim, H.S., & You, S.S. (2020). Management and optimisation of chaotic supply chain system using adaptive sliding mode control algorithm, International Journal of Production Research, 59(9), 2571–2587. https://doi.org/10.1080/00207543.2020.1735662 | es_ES |
dc.description.references | Yan, L., Liu, J., Xu, F., Teo, K. L., & Lai, M. (2020). Control and synchronization of hyperchaos in digital manufacturing supply chain. Applied Mathematics and Computation, 391, 125646. https://doi.org/10.1016/j.amc.2020.125646 | es_ES |
dc.description.references | Yingjin, L., Yong, T., Xiaowo, T. (2004). Study On the Complexity of the Bullwhip Effect, Journal of Electronic Science and Technology of China, 2(3). | es_ES |
dc.description.references | Yu, B.S., Xu, S.D., & Jin, D.P. (2020). Chaos in a tethered satellite system induced by atmospheric drag and Earth’s oblateness, Nonlinear Dynamic, 101, 1233–1244 https://doi.org/10.1007/s11071-020-05844-8 | es_ES |