- -

An industry maturity model for implementing Machine Learning operations in manufacturing

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

An industry maturity model for implementing Machine Learning operations in manufacturing

Show full item record

Mateo Casalí, MA.; Fraile Gil, F.; Boza, A.; Nazarenko, A. (2023). An industry maturity model for implementing Machine Learning operations in manufacturing. International Journal of Production Management and Engineering. 11(2):179-186. https://doi.org/10.4995/ijpme.2023.19138

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199416

Files in this item

Item Metadata

Title: An industry maturity model for implementing Machine Learning operations in manufacturing
Author: Mateo Casalí, Miguel Angel Fraile Gil, Francisco Boza, Andrés Nazarenko, Artem
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Universitat Politècnica de València. Centro de Investigación en Gestión e Ingeniería de Producción - Centre d'Investigació en Gestió i Enginyeria de Producció
Issued date:
Abstract:
[EN] The next evolutionary technological step in the industry presumes the automation of the elements found within a factory, which can be accomplished through the extensive introduction of automatons, computers and Internet ...[+]
Subjects: Manufacturing Execution System , Zero-defect Manufacturing , Manufacturing Operations , CMM , ISA-95 , MLOps , Machine Learning
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
International Journal of Production Management and Engineering. (eissn: 2340-4876 )
DOI: 10.4995/ijpme.2023.19138
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ijpme.2023.19138
Project ID:
info:eu-repo/grantAgreement/EC/H2020/825631/EU/Zero-Defect Manufacturing Platform/ZDMP
info:eu-repo/grantAgreement/EC/H2020/958205/EU/Industrial Data Services for Quality Control in Smart Manufacturing/i4Q
Thanks:
The research leading to these results received funding from the European Union H2020 programs with grant agreements No. 825631, “Zero-Defect Manufacturing Platform (ZDMP)” and No. 958205, “Industrial Data Services for ...[+]
Type: Artículo

References

Escobar, C., Arinez, J., & Morales-Menéndez, R. (2020). Process-Monitoring-for-Quality-A Step Forward in the Zero. https://doi.org/10.4271/2020-01-1302

Naqa, I., Li, R., & Murphy, M. J. (Eds.). (2015). Machine Learning in Radiation Oncology. Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210(September 2018), 15-26. https://doi.org/10.1016/j.ijpe.2019.01.004 [+]
Escobar, C., Arinez, J., & Morales-Menéndez, R. (2020). Process-Monitoring-for-Quality-A Step Forward in the Zero. https://doi.org/10.4271/2020-01-1302

Naqa, I., Li, R., & Murphy, M. J. (Eds.). (2015). Machine Learning in Radiation Oncology. Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210(September 2018), 15-26. https://doi.org/10.1016/j.ijpe.2019.01.004

Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. Fifteenth International Conference on ICT and Knowledge Engineering, 1-6. https://doi.org/10.1109/ICTKE.2017.8259629

Psarommatis, F., Prouvost, S., May, G., & Kiritsis, D. (2020). Product Quality Improvement Policies in Industry 4.0: Characteristics, Enabling Factors, Barriers, and Evolution Toward Zero Defect Manufacturing. Frontiers in Computer Science, 2(August), 1-15. https://doi.org/10.3389/fcomp.2020.00026

Serrano-Ruiz, J. C., Mula, J., & Poler, R. (2021). Smart manufacturing scheduling: A literature review. Journal of Manufacturing Systems, 61, 265-287. https://doi.org/10.1016/j.jmsy.2021.09.011

Lindström, J., Kyösti, P., Birk, W., & Lejon, E. (2020). An initial model for zero defect manufacturing. Applied Sciences (Switzerland), 10(13). https://doi.org/10.3390/app10134570

Calvin, T. W. (1983). Quality Control Techniques for 'Zero Defects'. Technical Paper - Society of Manufacturing Engineers, C(3), 323-328. https://doi.org/10.1016/0026-2714(84)90075-1

Jürgen, K. (2007). Manufacturing Execution System - MES.

Fox, M. S., Chionglo, J. F., & Barbuceanu, M. (1993). The Integrated Supply Chain Management Project. Retrieved from https://www.researchgate.net/publication/239033756_The_Integrated_Supply_Chain_Management_Project

Unver, H. O. (2013). An ISA-95-based manufacturing intelligence system in support of lean initiatives. International Journal of Advanced Manufacturing Technology, 65(5-8), 853-866. https://doi.org/10.1007/s00170-012-4223-z

Junín Durán de Leon, A., Cruz Rentería, J. R., Muñoz Zamora, G., García-Alva, S., Gutiérrez-torres, L., & Sánchez Hernández, Z. (2016). Desarrollo de Software basado en el estándar ISA-95.

Finkelstein, A. (1992). A Software Process Immaturity Model, ACM SIGSOFT Software Engineering Notes, 17(4), 22-23. https://doi.org/10.1145/141874.141878

Galan Manuel, J., de la fuente, S., Alonso de Armiño, C., & Alcalde Delgado, R. (2021). 15th International Conference on Industrial Engineering and Industrial Management. Retrieved from https://pressbooks.pub/cioxxv

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record