Mostrar el registro sencillo del ítem
dc.contributor.author | Cardona, John F. | es_ES |
dc.contributor.author | Castaneda, Juliana | es_ES |
dc.contributor.author | do C. Martins, Leandro | es_ES |
dc.contributor.author | Gandouz, Mariem | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.contributor.author | Franco, Guillermo | es_ES |
dc.date.accessioned | 2023-11-07T19:02:13Z | |
dc.date.available | 2023-11-07T19:02:13Z | |
dc.date.issued | 2021-12-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199447 | |
dc.description.abstract | [EN] This paper discusses a case study in which publicly available data of a rail freight transportation firm has been gathered, cleansed, and analyzed in order to: (i) describe the data using statistical indicators and graphs; (ii) identify patterns regarding several Key Performance Indicators; (iii) obtain forecasts on the future evolution of these indicators; and (iv) use the identified patterns and the generated forecasts to propose customized insurance products that reflect the current and future freight transportation activity. The paper illustrates the different methodological steps required during the extraction and cleansing of the data which required the development of Python scripts, the use of time series analysis for obtaining reliable forecasts, and the use of machine learning models for designing customized insurance coverage from the identified patterns and predicted values. | es_ES |
dc.description.sponsorship | This study was completed and supported by Guy Carpenter & Company, LLC, and the Universitat Oberta de Catalunya. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Transportation Research Procedia | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Data analytics | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Business interruption | es_ES |
dc.subject | Insurance | es_ES |
dc.subject | Rail freight | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.trpro.2021.11.053 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Guy Carpenter & Company//GC-2018//Applications of intelligent algorithms, analytics, and cloud computing to enhance predictive models associated with catastrophe bonds/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Cardona, JF.; Castaneda, J.; Do C. Martins, L.; Gandouz, M.; Juan, AA.; Franco, G. (2021). Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators. Transportation Research Procedia. 58:393-400. https://doi.org/10.1016/j.trpro.2021.11.053 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.trpro.2021.11.053 | es_ES |
dc.description.upvformatpinicio | 393 | es_ES |
dc.description.upvformatpfin | 400 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.identifier.eissn | 2352-1465 | es_ES |
dc.relation.pasarela | S\500905 | es_ES |
dc.contributor.funder | Guy Carpenter & Company, LLC | es_ES |
dc.contributor.funder | Universitat Oberta de Catalunya | es_ES |