- -

Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cardona, John F. es_ES
dc.contributor.author Castaneda, Juliana es_ES
dc.contributor.author do C. Martins, Leandro es_ES
dc.contributor.author Gandouz, Mariem es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.contributor.author Franco, Guillermo es_ES
dc.date.accessioned 2023-11-07T19:02:13Z
dc.date.available 2023-11-07T19:02:13Z
dc.date.issued 2021-12-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199447
dc.description.abstract [EN] This paper discusses a case study in which publicly available data of a rail freight transportation firm has been gathered, cleansed, and analyzed in order to: (i) describe the data using statistical indicators and graphs; (ii) identify patterns regarding several Key Performance Indicators; (iii) obtain forecasts on the future evolution of these indicators; and (iv) use the identified patterns and the generated forecasts to propose customized insurance products that reflect the current and future freight transportation activity. The paper illustrates the different methodological steps required during the extraction and cleansing of the data which required the development of Python scripts, the use of time series analysis for obtaining reliable forecasts, and the use of machine learning models for designing customized insurance coverage from the identified patterns and predicted values. es_ES
dc.description.sponsorship This study was completed and supported by Guy Carpenter & Company, LLC, and the Universitat Oberta de Catalunya. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Transportation Research Procedia es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Data analytics es_ES
dc.subject Machine learning es_ES
dc.subject Business interruption es_ES
dc.subject Insurance es_ES
dc.subject Rail freight es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.trpro.2021.11.053 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Guy Carpenter & Company//GC-2018//Applications of intelligent algorithms, analytics, and cloud computing to enhance predictive models associated with catastrophe bonds/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Cardona, JF.; Castaneda, J.; Do C. Martins, L.; Gandouz, M.; Juan, AA.; Franco, G. (2021). Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators. Transportation Research Procedia. 58:393-400. https://doi.org/10.1016/j.trpro.2021.11.053 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.trpro.2021.11.053 es_ES
dc.description.upvformatpinicio 393 es_ES
dc.description.upvformatpfin 400 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.identifier.eissn 2352-1465 es_ES
dc.relation.pasarela S\500905 es_ES
dc.contributor.funder Guy Carpenter & Company, LLC es_ES
dc.contributor.funder Universitat Oberta de Catalunya es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem