- -

Trends in funding research and international collaboration on greenhouse gas emissions: A bibliometric approach.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Trends in funding research and international collaboration on greenhouse gas emissions: A bibliometric approach.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aleixandre Tudo, José es_ES
dc.contributor.author Castelló-Cogollos, Lourdes es_ES
dc.contributor.author Aleixandre Benavent, José Luís es_ES
dc.contributor.author Aleixandre-Benavent, Rafael es_ES
dc.date.accessioned 2023-11-08T19:01:56Z
dc.date.available 2023-11-08T19:01:56Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 0944-1344 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199468
dc.description.abstract [EN] The Web of Science Core Collection platform was used to withdraw the papers included in this study. The studied period comprised from inception till 2018. Trends in research, journals of publication, subject areas of research, keywords most frequently used, countries of publication, international collaboration, and trends of funding research were also analyzed. A total of 3902 articles were published, most of them (52.5%) during the five-year period 2014-2018. The area with the highest number of papers was environmental sciences (41%), followed by energy fuels (16.6%) and engineering environmental (15.7%). "Nitrous oxide emissions" was the most frequent word, followed by "Carbon dioxide emissions" and "Methane emissions". Other words that stood out were "Life cycle assessment", "Climate change" and "Environmental impacts". The United States was the country with the highest productivity (27.9%), followed by China (12.8%) and the United Kingdom (9.6%). There was a concentration of research in recent years, as more than 80% of the papers were published in the last 10 years. The journals that published the largest number of publications were devoted mainly to environmental studies (sciences and engineering), sustainable and green science and technology, energy and fuels, economics, and agriculture. Half of the works were published in Europe and the other half between North America and Asia. Two thirds of the works (67%) were financed compared to a third that were not financed. The percentage of funded works has been increasing over the last decade, which is seen as an indication of the importance of GHGE. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Environmental Science and Pollution Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Greenhouse gas emissions es_ES
dc.subject International collaboration es_ES
dc.subject Funded research es_ES
dc.subject Impact of research es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Trends in funding research and international collaboration on greenhouse gas emissions: A bibliometric approach. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11356-021-12776-2 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Gestión de la Innovación y del Conocimiento - Institut de Gestió de la Innovació i del Coneixement es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Aleixandre Tudo, J.; Castelló-Cogollos, L.; Aleixandre Benavent, JL.; Aleixandre-Benavent, R. (2021). Trends in funding research and international collaboration on greenhouse gas emissions: A bibliometric approach. Environmental Science and Pollution Research. 28(25):32330-32346. https://doi.org/10.1007/s11356-021-12776-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11356-021-12776-2 es_ES
dc.description.upvformatpinicio 32330 es_ES
dc.description.upvformatpfin 32346 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 25 es_ES
dc.identifier.pmid 33624245 es_ES
dc.relation.pasarela S\454259 es_ES
dc.description.references Aleixandre-Benavent R, Aleixandre-Tudó JL, Castelló-Cogollos L, Aleixandre JL (2017) Trends in scientific research on climate change in agriculture and forestry subject areas (2005-2014). J Clean Prod 147:406–418 es_ES
dc.description.references Aleixandre-Tudó JL, Bolaños-Pizarro M, Aleixandre JL, Aleixandre-Benavent R (2019a) Current trends in scientific research on global warming: a bibliometric analysis. Int J Global Warming 17:142–169 es_ES
dc.description.references Aleixandre-Tudó JL, Castelló-Cogollos L, Aleixandre JL, Aleixandre-Benavent R (2019b) Renewable energies: worldwide trends in research, funding and international collaboration. Renew Energy 139:268–278 es_ES
dc.description.references Aznar-Sanchez JA, Belmonte-Urena LJ, Velasco-Munoz JF, Manzano-Agugliaro F (2018) Economic analysis of sustainable water use: a review of worldwide research. J Clean Prod 198:1120–1132 es_ES
dc.description.references Batagelj V, Mrvar A (2002) Analysis and visualization of large networks. Lect Notes Comput Sci 2265:477e478 es_ES
dc.description.references Boden TA, Marland G, Andres RJ (2017) National CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2014. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.3334/CDIAC/00001_V2017 es_ES
dc.description.references Chavarro D, Rafols I, Tang P (2018) To what extent is inclusion in the Web of Science an indicator of journal 'quality'? Res Evaluat 27:106–118 es_ES
dc.description.references Chung JW, Meltzer DO (2009) Estimate of the carbon footprint of the US Health Care sector. J Am Med Assoc 302:1970–1972 es_ES
dc.description.references Dalpe R (2002) Bibliometric analysis of biotechnology. Scientometrics 55:189e213 es_ES
dc.description.references Dwyer L, Forsyth P, Spurr R, Hoque S (2010) Estimating the carbon footprint of Australian tourism. J Sustain Tour 18:355–376 es_ES
dc.description.references Dodman D (2009) Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ Urban 21:185–201 es_ES
dc.description.references Englade AJ, Jin G (2006) Application of biotechnology in waste management for sustainable development: an overview. Manage Environ Qual Int J 17:467–477 es_ES
dc.description.references Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Chang 46:115–118 es_ES
dc.description.references Figueroa JD, Fout T, Plasynski S, Mellvried H, Srivastava RD (2008) Advances in CO2 capture technology—the US Department of Energy´s Carbon Sequestration Program. Int J Greenhouse Gas Control 2:9–20 es_ES
dc.description.references Gingras Y, Khelfaoui M (2018) Assessing the effect of the United States “citation advantage” on other countries' scientific impact as measured in the Web of Science (WoS) database. Scientometrics 114:517–532 es_ES
dc.description.references Goek A, Rigby J, Shapira P (2016) The impact of research funding on scientific outputs: evidence from six smaller European countries. J Assoc Inf Sci Technol 67:715–730 es_ES
dc.description.references Hache E, Palle A (2019) Renewable energy source integration into power networks, research trends and policy implications: a bibliometric and research actors survey analysis. Energy Policy 124:23–25 es_ES
dc.description.references Haunnschild R, Bornmann L, Marx V (2016) Climate change research in view of bibliometrics. PLoS One 11:1e19 es_ES
dc.description.references Hertwich EG, Peters GP (2009) Carbon footprint of Nations: a global, trade-linked analysis. Environ Sci Technol 43:6414–6420 es_ES
dc.description.references Husain S, Mushtaq M (2015) Research assessment of climate change data: a scientometric construct. Qualitative and Quantitative Methods in Libraries Special Issue 183e194 es_ES
dc.description.references IPCC (2014). Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectorial aspects. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 1-32 es_ES
dc.description.references Iribarren D, Vázquez-Rowe I, Hospido A, Moreira MT, Feijoo T (2010) Estimation of the carbon footprint of the Galician fishing activity (NW Spain). Sci Total Environ 408:5284–5294 es_ES
dc.description.references Jacob BA, Lefgren L (2011) The impact of research grant funding on scientific productivity. J Public Econ 95(9-10):1168–1177 es_ES
dc.description.references Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing earth´s temperature. Science 330:356–359 es_ES
dc.description.references Lee KH (2011) Integrating carbon footprint into supply chain management: the case of Hunday Motor Company in the automobile industry. J Clean Prod 19:1216–1223 es_ES
dc.description.references Leydesdorff L, Wagner C, Bornmann L (2014) The European Union, China, and the United States in the top-1% and top-10% layers of most-frequently cited publications: competition and collaborations. J Inf Secur 8:606–617 es_ES
dc.description.references Martin-Martin A, Orduna-Malea E, Lopez-Cozar E (2018) Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison. Scientometrics 116:2175–2188 es_ES
dc.description.references Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769–1772 es_ES
dc.description.references McKain K, Wofsy SC, Nehrkorn T, Eluszkiewicz J, Ehleringer JR, Stephen BB (2012) Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc Natl Acad Sci U S A 109:8423–8428 es_ES
dc.description.references Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 458(7242):1158–1162 es_ES
dc.description.references Mongeon P, Paul-Hus A (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 106:213–228 es_ES
dc.description.references Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N(2)O budget: nitrous oxide emissions through the agricultural nitrogen cycle—OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nut Cycling Agroeco 52:225–248 es_ES
dc.description.references Penela AC, García-Negro MC, Quesada JLD (2009) A methodological proposal for corporate carbon footprint and its application to a wine-producing company in Galicia. Sustainability 1:302–318 es_ES
dc.description.references Paris Agreement (2015) Adopted at the XXI international conference on climate change (COP21) in December 2015 es_ES
dc.description.references Parsons D (2009) The environmental impact of engineering education in Australia. Int J Life Cycle Assess 14:175–183 es_ES
dc.description.references Paul-Hus A, Desrochers N, Costas R (2016) Characterization, description, and considerations for the use of funding acknowledgement data in Web of Science. Scientometrics 108:167–182 es_ES
dc.description.references Patz JA, Grabow ML, Limaye VS (2014) When it rains, it pours: future climate extremes and health. Ann Global Health 80:332–344 es_ES
dc.description.references Raper S, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313 es_ES
dc.description.references Riahi K, Rao S, Krey V, Cho CH, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57 es_ES
dc.description.references Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from and-use change. Science 319(5867):1238–1240 es_ES
dc.description.references Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266 es_ES
dc.description.references Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42:3170–3176 es_ES
dc.description.references Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302 es_ES
dc.description.references Song Y, Zhao TZ (2013) A bibliometric analysis of global forest ecology research during 2002–2011. Springerplus 2:204 es_ES
dc.description.references United States Environmental Protection Agency (2019) Global Greenhouse Gas Emissions Data. Accessed 11/07/2019. Available at: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Country. es_ES
dc.description.references van Vuuren DP, Hoogwijk M, Barker T, Riahi K, Boeters S, Chateau J, Scrieciu S, van Vliet J, Masui T, Blok K, Blomen E, Kram T (2009) Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emissions reduction potentials. Energy Policy 37(12):5125–5139 es_ES
dc.description.references Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, Beevers S, Chalabi Z, Chowdhury Z, Cohen A, Franco OH, Haines A, Hickman R, Lindsay G, Mittal I, Mohan D, Tiwari G, Woodward A, Roberts I (2009) Health and Climate Change 2 Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374(9705):1930–1943 es_ES
dc.description.references Yan E, Wu C, Song M (2018) The funding factor: a cross-disciplinary examination of the association between research funding and citation impact. Scientometrics 115:369–384 es_ES
dc.description.references Yang L, Chen Z, Xiong Z, Liu Y, Ying X (2015) Comparison study of landfill gas emissions from subtropical landfill with various phases: a case study in Wuhan, China. J Air Waste Manage Assoc 65:980–986 es_ES
dc.description.references Yang L, Chen Z, Liu T, Gong Z, Yu Y, Wang J (2013) Global trends of solid waste research from 1997 to 2011 by using bibliometric analysis. Scientometrics 96:133–146 es_ES
dc.description.references Zhang J, Smith KR, Ma Y, Ye S, Jiang F, Qi W, Liu P, Khalil MAK, Rasmussen RA, Thorneloe SA (2000) Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos Environ 34:4537–4549 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem