Mostrar el registro sencillo del ítem
dc.contributor.author | do C. Martins, Leandro | es_ES |
dc.contributor.author | Gonzalez-Neira, Eliana M. | es_ES |
dc.contributor.author | Hatami, Sara | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.contributor.author | Montoya-Torres, Jairo R. | es_ES |
dc.date.accessioned | 2023-11-10T19:03:59Z | |
dc.date.available | 2023-11-10T19:03:59Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.issn | 0360-8352 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199494 | |
dc.description.abstract | [EN] Many supply chains are composed of producers, suppliers, carriers, and customers. These agents must be coordinated to reduce waste and lead times. Production and distribution are two essential phases in most supply chains. Hence, improving the coordination of these phases is critical. This paper studies a combined hybrid flowshop and vehicle routing problem. The production phase is modeled as a hybrid flow-shop configuration. In the second phase, the produced jobs have to be delivered to a set of customers. The delivery is carried out in batches of products, using vehicles with a limited capacity. With the objective of minimizing the service time of the last customer, we propose a biased-randomized variable neighborhood descent algorithm. Different test factors, such as the use of alternative initial solutions, solution representations, and loading strategies, are considered and analyzed. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science (PID2019111100RBC21, RED2018-102642-T) and the Erasmus+ program (2019IES01KA103062602). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers & Industrial Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Hybrid flow-shop problem | es_ES |
dc.subject | Vehicle routing problem | es_ES |
dc.subject | Biased randomization | es_ES |
dc.subject | Metaheuristics | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Combining production and distribution in supply chains: The hybrid flow-shop vehicle routing problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cie.2021.107486 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Agencia Estatal de Investigación//RED2018-102642-T//Spanish Network in Intelligent and Sustainable Transportation . Spanish Ministry of Science, Innovation, and Universities/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//2019-I-ES01-KA103-062602/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Do C. Martins, L.; Gonzalez-Neira, EM.; Hatami, S.; Juan, AA.; Montoya-Torres, JR. (2021). Combining production and distribution in supply chains: The hybrid flow-shop vehicle routing problem. Computers & Industrial Engineering. 159:1-12. https://doi.org/10.1016/j.cie.2021.107486 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cie.2021.107486 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 159 | es_ES |
dc.relation.pasarela | S\500814 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |