- -

Impact evaluation of deep learning on image segmentation for automatic bluefin tuna sizing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact evaluation of deep learning on image segmentation for automatic bluefin tuna sizing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz-Benavent, Pau es_ES
dc.contributor.author Martínez-Peiró, J. es_ES
dc.contributor.author Andreu García, Gabriela es_ES
dc.contributor.author Puig Pons, Vicente es_ES
dc.contributor.author Espinosa Roselló, Víctor es_ES
dc.contributor.author Pérez Arjona, Isabel es_ES
dc.contributor.author De la Gándara, F. es_ES
dc.contributor.author Ortega, A. es_ES
dc.date.accessioned 2023-11-13T19:03:28Z
dc.date.available 2023-11-13T19:03:28Z
dc.date.issued 2022-11 es_ES
dc.identifier.issn 0144-8609 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199578
dc.description.abstract [EN] This paper evaluates the impact of using deep learning techniques in an automatic fish sizing process. Automatic fish sizing with a non-invasive approach involves working with different views of the fish's body and changing environments, being the stage of extraction of individuals in the image and the quality of the segmentation essential to obtain good sizing measurements. The goal of this work is to improve the results and functionality achieved in our previous studies with conventional segmentation methods based on local thresholding, where different limitations were observed, mainly the necessity of parameters tuning and a high computational cost. The number of detections must also increase significantly to increase the reliability of the statistical results. An approach using convolutional neural networks is proposed for fish detection and segmentation in videos acquired under real conditions, which eliminates the engineering procedure of parameter adjustment and generalises the solution for fish segmentation to deal with different environmental conditions (illumination and water turbidity) and background variability. The results show that the fish sizing procedure is enhanced thanks to the improvement in fish image instance segmentation. In particular, the number of fish measurements increases by up to 2.45 times when using Mask R-CNN and the PointRend module, thus increasing the accuracy of the fish length estimation, and the number of measurements per minute of computing time increases by up to 3.5 times. Our proposal obtains highly accurate fish length estimations in juvenile bluefin tuna based on a stereoscopic vision system and a deformable model of the fish's silhouette, both from the ventral and dorsal perspectives. An important improvement is achieved by applying CNN, as demonstrated by the number of segmented instances, the time required to segment an instance, and the accuracy of the fish sizing achieved. es_ES
dc.description.sponsorship This study forms part of the ThinkInAzul programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17. I1) and by Generalitat Valenciana (THINKINAZUL/2021/.007). It was also supported by funding from AICO/2021/016 (Generalitat Valenciana), PAID-10-19 (UPV) and IDIFEDER/2018/025 (EUFEDER Comunitat Valenciana 2014-2020). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Aquacultural Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Underwater stereo vision es_ES
dc.subject Computer vision es_ES
dc.subject Fishery management es_ES
dc.subject Automatic fish sizing es_ES
dc.subject Biomass estimation es_ES
dc.subject Convolutional neural networks es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Impact evaluation of deep learning on image segmentation for automatic bluefin tuna sizing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.aquaeng.2022.102299 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//THINKINAZUL%2F2021%2F007//INTEGRACION DE TECNOLOGIA DIGITAL Y DEEP LEARNING PARA CONTRIBUIR A MODELOS DE PESCA Y ACUICULTURA INTELIGENTES, MEDIANTE PROCESAMIENTO AUTOMÁTICO DE IMAGENES (ACUINTTEC)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F016//TECNICAS AVANZADAS DE VXC BASADAS EN DEEP LEARNING Y CNNS PARA LA CARACTERIZACION BIOMETRICA DEL ATUN ROJO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//PAID-10-19//Técnicas avanzadas de visión por computador para identificación y seguimiento en entornos naturales./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.description.bibliographicCitation Muñoz-Benavent, P.; Martínez-Peiró, J.; Andreu García, G.; Puig Pons, V.; Espinosa Roselló, V.; Pérez Arjona, I.; De La Gándara, F.... (2022). Impact evaluation of deep learning on image segmentation for automatic bluefin tuna sizing. Aquacultural Engineering. 99:1-10. https://doi.org/10.1016/j.aquaeng.2022.102299 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.aquaeng.2022.102299 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 99 es_ES
dc.relation.pasarela S\500318 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem