- -

Countable networks on Malykhin's maximal topological group

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Countable networks on Malykhin's maximal topological group

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Márquez, Edgar es_ES
dc.date.accessioned 2023-11-14T13:14:31Z
dc.date.available 2023-11-14T13:14:31Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199642
dc.description.abstract [EN] We present a solution to the following problem: Does every countable and non-discrete topological (Abelian) group have a countable network with infinite elements? In fact, we show that no maximal topological space allows for a countable network with infinite elements. As a result, we answer the question in the negative. The article also focuses on Malykhin's maximal topological group constructed in 1975 and establishes some unusual properties of countable networks on this special group G. We show, in particular, that for every countable network N for G, the family of finite elements of N is also a network for G. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Countable network es_ES
dc.subject Resolvable es_ES
dc.subject Linear es_ES
dc.subject P-point es_ES
dc.subject P-space es_ES
dc.subject Maximal es_ES
dc.title Countable networks on Malykhin's maximal topological group es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18517
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Márquez, E. (2023). Countable networks on Malykhin's maximal topological group. Applied General Topology. 24(2):239-246. https://doi.org/10.4995/agt.2023.18517 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18517 es_ES
dc.description.upvformatpinicio 239 es_ES
dc.description.upvformatpfin 246 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18517 es_ES
dc.description.references A. V. Arhangel'skii and M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, Vol. I, Atlantis Press and World Scientific, Paris-Amsterdam, 2008. https://doi.org/10.2991/978-94-91216-35-0 es_ES
dc.description.references E. K. van Douwen, The Integers and Topology, in: Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, Eds.), Elsevier Science Publ. B. V. (1984), 111-167. https://doi.org/10.1016/B978-0-444-86580-9.50006-9 es_ES
dc.description.references D. H. Fremlin, Consequences of Martin's Axiom, Cambridge University Press, Cambridge, 1984. https://doi.org/10.1017/CBO9780511896972 es_ES
dc.description.references E. Márquez and M. Tkachenko, D-independent topological groups, Topology Appl. 300 (2021), 107761. https://doi.org/10.1016/j.topol.2021.107761 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem