Mostrar el registro sencillo del ítem
dc.contributor.author | Castaneda, Juliana | es_ES |
dc.contributor.author | Cardona, John.F. | es_ES |
dc.contributor.author | Martins, Leandro do C. | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.date.accessioned | 2023-11-14T19:02:32Z | |
dc.date.available | 2023-11-14T19:02:32Z | |
dc.date.issued | 2021-12-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199657 | |
dc.description.abstract | [EN] The sustainable development of freight transport has received much attention in recent years. The new regulations for sustainable transport activities established by the European Commission and the United Nations have created the need for road freight transport companies to develop methodologies to measure the social and environmental impact of their activities. This work aims to develop a model based on supervised machine learning methods with intelligent classification algorithms and key performance indicators for each dimension of sustainability as input data. This model allows establishing the level of sustainability (high, medium, or low). Several classification algorithms were trained, finding that the support vector machines algorithm is the most accurate, with 98% accuracy for the data set used. The model is tested by establishing the level of sustainability of a European company in the road freight sector, thus allowing the establishment of green strategies for its sustainable development. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21 / AEI /10.13039/501100011033, RED2018-102642-T), and the Erasmus+ Program (2019-I-ES01-KA103-062602). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Transportation Research Procedia | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Freight transportation | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | Classification algorithms | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Supervised Machine Learning Algorithms for Measuring and Promoting Sustainable Transportation and Green Logistics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.trpro.2021.11.061 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Agencia Estatal de Investigación//RED2018-102642-T//Spanish Network in Intelligent and Sustainable Transportation . Spanish Ministry of Science, Innovation, and Universities/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//2019-I-ES01-KA103-062602/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Castaneda, J.; Cardona, J.; Martins, LDC.; Juan, AA. (2021). Supervised Machine Learning Algorithms for Measuring and Promoting Sustainable Transportation and Green Logistics. Transportation Research Procedia. 58:455-462. https://doi.org/10.1016/j.trpro.2021.11.061 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.trpro.2021.11.061 | es_ES |
dc.description.upvformatpinicio | 455 | es_ES |
dc.description.upvformatpfin | 462 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.identifier.eissn | 2352-1465 | es_ES |
dc.relation.pasarela | S\500907 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |