- -

Supervised Machine Learning Algorithms for Measuring and Promoting Sustainable Transportation and Green Logistics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supervised Machine Learning Algorithms for Measuring and Promoting Sustainable Transportation and Green Logistics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castaneda, Juliana es_ES
dc.contributor.author Cardona, John.F. es_ES
dc.contributor.author Martins, Leandro do C. es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.date.accessioned 2023-11-14T19:02:32Z
dc.date.available 2023-11-14T19:02:32Z
dc.date.issued 2021-12-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199657
dc.description.abstract [EN] The sustainable development of freight transport has received much attention in recent years. The new regulations for sustainable transport activities established by the European Commission and the United Nations have created the need for road freight transport companies to develop methodologies to measure the social and environmental impact of their activities. This work aims to develop a model based on supervised machine learning methods with intelligent classification algorithms and key performance indicators for each dimension of sustainability as input data. This model allows establishing the level of sustainability (high, medium, or low). Several classification algorithms were trained, finding that the support vector machines algorithm is the most accurate, with 98% accuracy for the data set used. The model is tested by establishing the level of sustainability of a European company in the road freight sector, thus allowing the establishment of green strategies for its sustainable development. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21 / AEI /10.13039/501100011033, RED2018-102642-T), and the Erasmus+ Program (2019-I-ES01-KA103-062602). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Transportation Research Procedia es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Machine learning es_ES
dc.subject Freight transportation es_ES
dc.subject Sustainability es_ES
dc.subject Classification algorithms es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Supervised Machine Learning Algorithms for Measuring and Promoting Sustainable Transportation and Green Logistics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.trpro.2021.11.061 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Agencia Estatal de Investigación//RED2018-102642-T//Spanish Network in Intelligent and Sustainable Transportation . Spanish Ministry of Science, Innovation, and Universities/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//2019-I-ES01-KA103-062602/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Castaneda, J.; Cardona, J.; Martins, LDC.; Juan, AA. (2021). Supervised Machine Learning Algorithms for Measuring and Promoting Sustainable Transportation and Green Logistics. Transportation Research Procedia. 58:455-462. https://doi.org/10.1016/j.trpro.2021.11.061 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.trpro.2021.11.061 es_ES
dc.description.upvformatpinicio 455 es_ES
dc.description.upvformatpfin 462 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.identifier.eissn 2352-1465 es_ES
dc.relation.pasarela S\500907 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem