- -

Slope Entropy Normalisation by Means of Analytical and Heuristic Reference Values

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Slope Entropy Normalisation by Means of Analytical and Heuristic Reference Values

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuesta Frau, David es_ES
dc.contributor.author Kouka, Mahdy es_ES
dc.contributor.author Silvestre-Blanes, Javier es_ES
dc.contributor.author Sempere Paya, Víctor Miguel es_ES
dc.date.accessioned 2023-11-14T19:03:05Z
dc.date.available 2023-11-14T19:03:05Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199671
dc.description.abstract [EN] Slope Entropy (SlpEn) is a very recently proposed entropy calculation method. It is based on the differences between consecutive values in a time series and two new input thresholds to assign a symbol to each resulting difference interval. As the histogram normalisation value, SlpEn uses the actual number of unique patterns found instead of the theoretically expected value. This maximises the information captured by the method but, as a consequence, SlpEn results do not usually fall within the classical [0,1] interval. Although this interval is not necessary at all for time series classification purposes, it is a convenient and common reference framework when entropy analyses take place. This paper describes a method to keep SlpEn results within this interval, and improves the interpretability and comparability of this measure in a similar way as for other methods. It is based on a max-min normalisation scheme, described in two steps. First, an analytic normalisation is proposed using known but very conservative bounds. Afterwards, these bounds are refined using heuristics about the behaviour of the number of patterns found in deterministic and random time series. The results confirm the suitability of the approach proposed, using a mixture of the two methods. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Slope entropy es_ES
dc.subject Time series classification es_ES
dc.subject Entropy normalisation es_ES
dc.subject Maximum entropy es_ES
dc.subject Minimum entropy es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Slope Entropy Normalisation by Means of Analytical and Heuristic Reference Values es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e25010066 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Cuesta Frau, D.; Kouka, M.; Silvestre-Blanes, J.; Sempere Paya, VM. (2023). Slope Entropy Normalisation by Means of Analytical and Heuristic Reference Values. Entropy. 25(1):1-16. https://doi.org/10.3390/e25010066 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e25010066 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 36673207 es_ES
dc.identifier.pmcid PMC9858583 es_ES
dc.relation.pasarela S\480046 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem