- -

Strong Fréchet properties of spaces constructed from squares and AD families

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Strong Fréchet properties of spaces constructed from squares and AD families

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen-Mertens, William es_ES
dc.contributor.author Corral-Rojas, Cesar Ismael es_ES
dc.contributor.author Szeptycki, Paul J. es_ES
dc.date.accessioned 2023-11-15T07:18:02Z
dc.date.available 2023-11-15T07:18:02Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199680
dc.description.abstract [EN] We answer questions of Arhangel'skiĭ using spaces defined from combinatorial objects. We first establish further convergence properties of a space constructed from □ ( κ ) showing it is Fréchet-Urysohn for finite sets and a w-space that is not a W-space. We also show that under additional assumptions it may be not bi-sequential, and so providing a consistent example of an absolutely Fréchet α1 space that is not bisequential. In addition, if we do not require the space being α1, we can construct a ZFC example of a countable absolutely Fréchet space that is not bisequential from an almost disjoint family of subsets of the natural numbers. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fréchet-Urysoh es_ES
dc.subject Bi-sequential es_ES
dc.subject W-space es_ES
dc.subject α1-space es_ES
dc.title Strong Fréchet properties of spaces constructed from squares and AD families es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18504
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Chen-Mertens, W.; Corral-Rojas, CI.; Szeptycki, PJ. (2023). Strong Fréchet properties of spaces constructed from squares and AD families. Applied General Topology. 24(2):379-389. https://doi.org/10.4995/agt.2023.18504 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18504 es_ES
dc.description.upvformatpinicio 379 es_ES
dc.description.upvformatpfin 389 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18504 es_ES
dc.description.references A. V. Arkhangel'skiĭ, The spectrum of frequencies of a topological space and the product operation, Trans. Moscow Math. Soc. 40, no. 2 (1981), 163-200. es_ES
dc.description.references A. V. Arkhangel'skiĭ and A. Vladimirovich, The frequency spectrum of a topological space and classification of spaces, Doklady Akademii Nauk 206, no. 2 (1972), 265-268. es_ES
dc.description.references B. Balcar, J. Dočkálková and P. Simon, Almost disjoint families of countable sets, Finite and infinite sets, North-Holland (1984), 59-88. https://doi.org/10.1016/B978-0-444-86893-0.50009-7 es_ES
dc.description.references W. Chen-Mertens and P. J. Szeptycki, The effect of forcing axioms on the tightness of the ${G}_delta$-modification, Fundamenta Mathematicae 251, (2020), 195-202. https://doi.org/10.4064/fm869-2-2020 es_ES
dc.description.references C. Corral and M. Hrušák, Fréchet-like properties and almost disjoint families, Topology Appl. 277 (2020), 107216. https://doi.org/10.1016/j.topol.2020.107216 es_ES
dc.description.references A. Dow, More set-theory for topologists, Topology Appl. 64, no. 3 (1995), 243-300. https://doi.org/10.1016/0166-8641(95)00034-E es_ES
dc.description.references G. Gruenhage, Products of Fréchet spaces, Topology Proc. 30, no. 2 (2006), 475-499. es_ES
dc.description.references G. Gruenhage, Infinite games and generalizations of first-countable spaces, General Topology Appl. 6, no. 3 (1976), 339-352. https://doi.org/10.1016/0016-660X(76)90024-6 es_ES
dc.description.references G. Gruenhage and P. J. Szeptycki, Fréchet-Urysohn for finite sets, Topology Appl. 151, no. 1-3 (2005), 238-259. https://doi.org/10.1016/j.topol.2003.09.014 es_ES
dc.description.references G. Gruenhage and P. J. Szeptycki, Fréchet-Urysohn for finite sets, II, Topology Appl. 154, no. 15 (2007), 2856-2872. https://doi.org/10.1016/j.topol.2005.11.021 es_ES
dc.description.references F. Hernández-Hernández and M. Hrušák, Topology of Mrówka-Isbell spaces, in: M. Hrušák, M., Á. Tamariz-Mascarúa, M. Tkachenko (eds), Pseudocompact Topological Spaces. Developments in Mathematics, vol 55. Springer (2018). https://doi.org/10.1007/978-3-319-91680-4_8 es_ES
dc.description.references M. Hrušák, Almost disjoint families and topology, in: K. Hart, J. van Mill, P. Simon (eds), Recent Progress in General Topology III. Atlantis Press, Paris (2014). https://doi.org/10.2991/978-94-6239-024-9_14 es_ES
dc.description.references M. Hrušák and U. A. Ramos García, Malykhin's problem, Advances in Mathematics 262 (2014), 193-212. https://doi.org/10.1016/j.aim.2014.05.009 es_ES
dc.description.references R. B. Jensen, The fine structure of the constructible hierarchy, Annals of Mathematical logic 4, no. 3 (1972), 229-308. https://doi.org/10.1016/0003-4843(72)90001-0 es_ES
dc.description.references M. Magidor and C. Lambie-Hanson, On the strenhts and weaknesses of weak squares, Appalachian Set Theory 406 (2012), 301-330. https://doi.org/10.1017/CBO9781139208574.011 es_ES
dc.description.references V. I. Malyhin, On countable spaces having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972), 1407-1411. es_ES
dc.description.references E. A. Michael, A quintuple quotient quest, General Topology Appl. 2 (1972), 91-138. https://doi.org/10.1016/0016-660X(72)90040-2 es_ES
dc.description.references S. Mrówka, On completely regular spaces, Fundamenta Mathematicae, 41.1, (1955), 105-106. https://doi.org/10.4064/fm-41-1-105-106 es_ES
dc.description.references P. L. Sharma, Some characterizations of W-spaces and w-spaces, General Topology Appl. 9, no. 3 (1978), 289-293. https://doi.org/10.1016/0016-660X(78)90032-6 es_ES
dc.description.references P. Simon, A compact Fréchet space whose square is not Fréchet, Commentationes Mathematicae Universitatis Carolinae 21, no. 4 (1980), 749-753. es_ES
dc.description.references O. V. Sipacheva, Spaces Fréchet-Urysohn with respect to families of subsets, Topology Appl. 121, no. 1-2 (2002), 305-317. https://doi.org/10.1016/S0166-8641(01)00125-0 es_ES
dc.description.references S. Todorčević, Partitioning pairs of countable sets, Proc. Amer. Math. Soc. 111, no. 3 (1991), 841-844. https://doi.org/10.1090/S0002-9939-1991-1036992-4 es_ES
dc.description.references S. Todorčević, A dichotomy for P-ideals of countable sets, Fundamenta Mathematicae 166, no. 3 (2000), 251-267. https://doi.org/10.4064/fm-166-3-251-267 es_ES
dc.description.references S. Todorčević, Coherent sequences, in: M. Foreman, A. Kanamori (eds), Handbook of Set Theory. Springer, Dordrecht (2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem