- -

Smooth fans that are endpoint rigid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smooth fans that are endpoint rigid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Gutiérrez, Rodrigo es_ES
dc.contributor.author Hoehn, Logan C. es_ES
dc.date.accessioned 2023-11-15T07:29:30Z
dc.date.available 2023-11-15T07:29:30Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199687
dc.description.abstract [EN] Let X be a smooth fan and denote its set of endpoints by E(X). Let E be one of the following spaces: the natural numbers, the irrational numbers, or the product of the Cantor set with the natural numbers. We prove that there is a smooth fan X such that E(X) is homeomorphic to E and for every homeomorphism h : X → X , the restriction of h to E(X) is the identity. On the other hand, we also prove that if X is any smooth fan such that E(X) is homeomorphic to complete Erdős space, then X is necessarily homeomorphic to the Lelek fan; this adds to a 1989 result by Włodzimierz Charatonik. es_ES
dc.description.sponsorship The second named author was partially supported by NSERC grant RGPIN2019-05998. We would also like to thank the Department of Mathematics and the Division of Basic Sciences and Engineering of the Universidad Autónoma Metropolitana, Iztapalapa for funding the second named author’s visit to Mexico city during May, 2019. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Smooth fan es_ES
dc.subject Rigidity es_ES
dc.subject Lelek fan es_ES
dc.subject Almost zero-dimensional es_ES
dc.subject Erdős space es_ES
dc.title Smooth fans that are endpoint rigid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.17922
dc.relation.projectID info:eu-repo/grantAgreement/NSERC//RGPIN2019-05998 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hernández-Gutiérrez, R.; Hoehn, LC. (2023). Smooth fans that are endpoint rigid. Applied General Topology. 24(2):407-422. https://doi.org/10.4995/agt.2023.17922 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.17922 es_ES
dc.description.upvformatpinicio 407 es_ES
dc.description.upvformatpfin 422 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17922 es_ES
dc.contributor.funder Universidad Autónoma Metropolitana es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references G. Acosta, L. C. Hoehn and Y. Pacheco Juárez, Homogeneity degree of fans, Topology Appl. 231 (2017), 320-328. https://doi.org/10.1016/j.topol.2017.09.002 es_ES
dc.description.references G. Acosta and Y. Pacheco-Juárez, (frac{1}{3})-homogeneous dendrites, Topology Appl. 219 (2017), 55-77. https://doi.org/10.1016/j.topol.2017.01.003 es_ES
dc.description.references A. V. Arhangel'skii and J. van Mill, Topological homogeneity, Recent progress in general topology III, Amsterdam: Atlantis Press, 2014, pp. 1-68. https://doi.org/10.2991/978-94-6239-024-9_1 es_ES
dc.description.references J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.) 54 (1967), 39 pp. es_ES
dc.description.references W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15, no. 1 (1989), 27-34. es_ES
dc.description.references H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fundam. Math. 60 (1967), 241-249. https://doi.org/10.4064/fm-60-3-241-249 es_ES
dc.description.references J. J. Dijkstra and J. van Mill, Characterizing complete Erdős space, Can. J. Math. 61, no. 1 (2009), 124-140. https://doi.org/10.4153/CJM-2009-006-6 es_ES
dc.description.references J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem. Am. Math. Soc. no. 979, Providence, RI: American Mathematical Society (AMS), 2010. https://doi.org/10.1090/S0065-9266-10-00579-X es_ES
dc.description.references C. Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89-90. https://doi.org/10.4064/cm-20-1-89-90 es_ES
dc.description.references P. Erdős, The dimension of the rational points in Hilbert space, Ann. Math. 41, no. (1940), 734-736. https://doi.org/10.2307/1968851 es_ES
dc.description.references K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fundam. Math. 150, no. 2 (1996), 97-112. https://doi.org/10.4064/fm-150-2-97-112 es_ES
dc.description.references A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301-319. https://doi.org/10.4064/fm-49-3-301-319 es_ES
dc.description.references S. B. Nadler, Jr., Continuum theory. An introduction, vol. 158, New York: Marcel, 1992. es_ES
dc.description.references A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tracts, 27. Centrum voor Wiskunde en Informatica. Amsterdam: Mathematisch Centrum. III, 133 p. (1986). es_ES
dc.description.references F. van Engelen, A. W. Miller and J. Steel, Rigid Borel sets and better quasiorder theory, Logic and combinatorics, Proc. AMS-IMS-SIAM Conf., Arcata/Calif. 1985, Contemp. Math. 65, 199-222, 1987. https://doi.org/10.1090/conm/065/891249 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem