- -

Some topological and cardinal properties of the Nτφ-nucleus of a space X

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some topological and cardinal properties of the Nτφ-nucleus of a space X

Mostrar el registro completo del ítem

Mukhamadiev, F. (2023). Some topological and cardinal properties of the Nτφ-nucleus of a space X. Applied General Topology. 24(2):423-432. https://doi.org/10.4995/agt.2023.17884

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199690

Ficheros en el ítem

Metadatos del ítem

Título: Some topological and cardinal properties of the Nτφ-nucleus of a space X
Autor: Mukhamadiev, Farkhod
Fecha difusión:
Resumen:
[EN] In this paper, we study the behavior of some topological and cardinal properties of topological spaces under the influence of the Nτφ -kernel of a space X. It has been proved that the Nτφ-kernel of a space X preserves ...[+]
Palabras clave: Souslin number , Weight , Density , Complete linked systems , N-compact kernel of a space , Nτφ-kernel of a space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.17884
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.17884
Tipo: Artículo

References

A. V. Arkhangel'skii, An approximation of the theory of dyadic bicompacta, Dokl. Akad. Nauk SSSR, 184, no. 4 (1969), 767-770.

A. V. Arkhangel'skii, Topological Space of Functions, Mosk. Gos. Univ.,Moscow, 1989 (in Russian).

R. B. Beshimov, Some properties of the functor O_ β, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5 [+]
A. V. Arkhangel'skii, An approximation of the theory of dyadic bicompacta, Dokl. Akad. Nauk SSSR, 184, no. 4 (1969), 767-770.

A. V. Arkhangel'skii, Topological Space of Functions, Mosk. Gos. Univ.,Moscow, 1989 (in Russian).

R. B. Beshimov, Some properties of the functor O_ β, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5

R. B. Beshimov, D. N. Georgiou, and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566

R. B. Beshimov, and F. G. Mukhamadiev, Some cardinal properties of complete linked systems with compact elements and absolute regular spaces, Mathematica Aeterna 3, no. 8 (2013), 625-633.

R. B. Beshimov, and D. T. Safarova, Some tpological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021) 2744-2753. https://doi.org/10.1134/S1995080221120088

R. Engelking, General Topology, Heldermannn, Berlin, 1989.

A. V. Ivanov, The space of complete enchained systems, Siberian Math. J. 27, no. 6 (1986), 863-375. https://doi.org/10.1007/BF00970004

E. V. Kashuba, A generalization of the Katetov Theorem for seminormal functors, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. no. 13 (2006), 82-89.

E. V. Kashuba, E. N. Stepanova, On the extension of seminormal functors to the category of Tychonoff spaces, Sibirsk. Mat. Zh. 59, no. 2 (2018), 362-368. Siberian Math. J. 59, no. 2 (2018), 283-287. https://doi.org/10.1134/S0037446618020118

Lj. D. R. Kočinac, F. G. Mukhamadiev, and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11, no. 6 (2022), 290. https://doi.org/10.3390/axioms11060290

Lj. D. R. Kočinac, F. G. Mukhamadiev, and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat, to appear.

T. Makhmud, On cardinal invariants of spaces of linked systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1995, no. 4 (1995), 14--19.

F. G. Mukhamadiev, On certain cardinal properties of the N_τ φ-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5

F. G. Mukhamadiev, Hewitt-Nachbin number of the space of thin complete linked systems. Geometry and topology, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 95-100. https://doi.org/10.36535/0233-6723-2021-197-95-100

F. G. Mukhamadiev, On local weak τ-density of topological spaces, Vestn. Tomsk. Gos. Univ. Mat. Mekh. 2021, no 70, 16-23. https://doi.org/10.17223/19988621/70/2

F. G. Mukhamadiev, Local τ-density of the sum and the superextension of topological spaces. Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 103-106. https://doi.org/10.36535/0233-6723-2021-201-103-106

T. K. Yuldashev, and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398

T. K. Yuldashev, and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011

T. K. Yuldashev, and F. G. Mukhamadiev, Local τ-density and local weak τ-density in topological spaces, Siberian Electronic Mathematical Reports 18, no. 1 (2021), 474-478. https://doi.org/10.33048/semi.2021.18.033

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem