- -

On e-spaces and rings of real valued e-continuous functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On e-spaces and rings of real valued e-continuous functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Afrooz, Susan es_ES
dc.contributor.author Azarpanah, Fariborz es_ES
dc.contributor.author Hasan Hajee, Nidaah es_ES
dc.date.accessioned 2023-11-15T07:36:36Z
dc.date.available 2023-11-15T07:36:36Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199692
dc.description.abstract [EN] Whenever the closure of an open set is also open, it is called e-open and if a space have a base consisting of e-open sets, it is called e-space. In this paper we first introduce and study e-spaces and e-continuous functions (we call a function f from a space X to a space Y an e-continuous at x ∈ X if for each open set V containing f(x) there is an e-open set containing x with f ( U ) ⊆ V ). We observe that the quasicomponent of each point in a space X is determined by e-continuous functions on X and it is characterized as the largest set containing the point on which every e-continuous function on X is constant. Next, we study the rings Ce( X ) of all real valued e-continuous functions on a space X. It turns out that Ce( X ) coincides with the ring of real valued clopen continuous functions on X which is a C(Y) for a zero-dimensional space Y whose elements are the quasicomponents of X. Using this fact we characterize the real maximal ideals of Ce( X ) and also give a natural representation of its maximal ideals. Finally we have shown that Ce( X ) determines the topology of X if and only if it is a zero-dimensional space. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject E-space es_ES
dc.subject E-continuous function es_ES
dc.subject Real maximal ideal es_ES
dc.subject Quasicomponent es_ES
dc.subject Zero-dimensional space es_ES
dc.title On e-spaces and rings of real valued e-continuous functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.17743
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Afrooz, S.; Azarpanah, F.; Hasan Hajee, N. (2023). On e-spaces and rings of real valued e-continuous functions. Applied General Topology. 24(2):433-448. https://doi.org/10.4995/agt.2023.17743 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.17743 es_ES
dc.description.upvformatpinicio 433 es_ES
dc.description.upvformatpfin 448 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17743 es_ES
dc.description.references S. Afrooz, F. Azarpanah and M. Etebar, On rings of real valued clopen continuous functions, Appl. Gen. Topol. 19, no. 2 (2018), 203-216. https://doi.org/10.4995/agt.2018.7667 es_ES
dc.description.references Z. Arjmandnezhad, F. Azarpanah, A. A. Hesari and A. R. Salehi, Characterizations of maximal $z^circ$-ideals of C(X) and real maximal ideals of q(X), Quaest. Math. 45 (2022), 1575-1587. https://doi.org/10.2989/16073606.2021.1966544 es_ES
dc.description.references R. Engelking, General Topology, Heldermann Verlag, Berlin-west 31, 1989. es_ES
dc.description.references L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976. es_ES
dc.description.references J. R. Porter and R. G. Woods, Ultra-Hausdorff H-closed extensions, Pacific J. Math. 84, no. 2, (1979), 399-411. https://doi.org/10.2140/pjm.1979.84.399 es_ES
dc.description.references I. L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14, no. 6 (1983), 241-250. es_ES
dc.description.references S. Willard, General Topology, Addison-Wesley Publishing Company, Inc. 1970. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem