Mostrar el registro sencillo del ítem
dc.contributor.author | Afrooz, Susan | es_ES |
dc.contributor.author | Azarpanah, Fariborz | es_ES |
dc.contributor.author | Hasan Hajee, Nidaah | es_ES |
dc.date.accessioned | 2023-11-15T07:36:36Z | |
dc.date.available | 2023-11-15T07:36:36Z | |
dc.date.issued | 2023-10-02 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/199692 | |
dc.description.abstract | [EN] Whenever the closure of an open set is also open, it is called e-open and if a space have a base consisting of e-open sets, it is called e-space. In this paper we first introduce and study e-spaces and e-continuous functions (we call a function f from a space X to a space Y an e-continuous at x ∈ X if for each open set V containing f(x) there is an e-open set containing x with f ( U ) ⊆ V ). We observe that the quasicomponent of each point in a space X is determined by e-continuous functions on X and it is characterized as the largest set containing the point on which every e-continuous function on X is constant. Next, we study the rings Ce( X ) of all real valued e-continuous functions on a space X. It turns out that Ce( X ) coincides with the ring of real valued clopen continuous functions on X which is a C(Y) for a zero-dimensional space Y whose elements are the quasicomponents of X. Using this fact we characterize the real maximal ideals of Ce( X ) and also give a natural representation of its maximal ideals. Finally we have shown that Ce( X ) determines the topology of X if and only if it is a zero-dimensional space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | E-space | es_ES |
dc.subject | E-continuous function | es_ES |
dc.subject | Real maximal ideal | es_ES |
dc.subject | Quasicomponent | es_ES |
dc.subject | Zero-dimensional space | es_ES |
dc.title | On e-spaces and rings of real valued e-continuous functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.17743 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Afrooz, S.; Azarpanah, F.; Hasan Hajee, N. (2023). On e-spaces and rings of real valued e-continuous functions. Applied General Topology. 24(2):433-448. https://doi.org/10.4995/agt.2023.17743 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.17743 | es_ES |
dc.description.upvformatpinicio | 433 | es_ES |
dc.description.upvformatpfin | 448 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17743 | es_ES |
dc.description.references | S. Afrooz, F. Azarpanah and M. Etebar, On rings of real valued clopen continuous functions, Appl. Gen. Topol. 19, no. 2 (2018), 203-216. https://doi.org/10.4995/agt.2018.7667 | es_ES |
dc.description.references | Z. Arjmandnezhad, F. Azarpanah, A. A. Hesari and A. R. Salehi, Characterizations of maximal $z^circ$-ideals of C(X) and real maximal ideals of q(X), Quaest. Math. 45 (2022), 1575-1587. https://doi.org/10.2989/16073606.2021.1966544 | es_ES |
dc.description.references | R. Engelking, General Topology, Heldermann Verlag, Berlin-west 31, 1989. | es_ES |
dc.description.references | L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976. | es_ES |
dc.description.references | J. R. Porter and R. G. Woods, Ultra-Hausdorff H-closed extensions, Pacific J. Math. 84, no. 2, (1979), 399-411. https://doi.org/10.2140/pjm.1979.84.399 | es_ES |
dc.description.references | I. L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14, no. 6 (1983), 241-250. | es_ES |
dc.description.references | S. Willard, General Topology, Addison-Wesley Publishing Company, Inc. 1970. | es_ES |