- -

Pettis property for Polish inverse semigroups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pettis property for Polish inverse semigroups

Mostrar el registro completo del ítem

Arana, K.; Pérez, J.; Uzcátegui, C. (2023). Pettis property for Polish inverse semigroups. Applied General Topology. 24(2):455-467. https://doi.org/10.4995/agt.2023.17396

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199699

Ficheros en el ítem

Metadatos del ítem

Título: Pettis property for Polish inverse semigroups
Autor: Arana, Karen Pérez, Jerson Uzcátegui, Carlos
Fecha difusión:
Resumen:
[EN] We study a property about Polish inverse semigroups similar to the classical theorem of Pettis about Polish groups. In contrast to what happens with Polish groups, not every Polish inverse semigroup have the Pettis ...[+]


[ES] Estudiamos una propiedad de semigrupos inversos polacos análoga al teorema clásico de Pettis sobre grupos polacos. A diferencia de lo que ocurre con los grupos, mostramos que no todo semigrupo inverso polaco tiene la ...[+]
Palabras clave: Inverse topological semigroups , Polish semigroups , Pettis theorem , Automatic continuity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.17396
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.17396
Tipo: Artículo

References

J. Carruth, H. Hildebrant, and R. Koch, The theory of topological semigroups, Monographs and Textbooks in Pure and Applied Mathematics vol. 75, Marcel Dekker, Inc., New York, 1983.

L. Elliott, J. Jonušas, Z. Mesyan, J. D. Mitchell, M. Morayne, and Y. P'eresse, Automatic continuity, unique Polish topologies, and Zariski topologies (Part I, monoids), https://arxiv.org/abs/1912.07029, 2020.

L. Elliott, J. Jonušas, J. D. Mitchell, Y. Péresse, and M. Pinsker, Polish topologies on endomorphism monoids of relational structures, https://arxiv.org/abs/2203.11577, 2022. [+]
J. Carruth, H. Hildebrant, and R. Koch, The theory of topological semigroups, Monographs and Textbooks in Pure and Applied Mathematics vol. 75, Marcel Dekker, Inc., New York, 1983.

L. Elliott, J. Jonušas, Z. Mesyan, J. D. Mitchell, M. Morayne, and Y. P'eresse, Automatic continuity, unique Polish topologies, and Zariski topologies (Part I, monoids), https://arxiv.org/abs/1912.07029, 2020.

L. Elliott, J. Jonušas, J. D. Mitchell, Y. Péresse, and M. Pinsker, Polish topologies on endomorphism monoids of relational structures, https://arxiv.org/abs/2203.11577, 2022.

O. V. Gutik, J. Lawson, and D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78, no. 2 (2009), 326-336. https://doi.org/10.1007/s00233-008-9112-2

O. V. Gutik, and A. R. Reiter, Symmetric inverse topological semigroups of finite rank ≤ n, Mat. Metodi Fiz.-Mekh. Polya 52, no. 3 (2009), 7-14.

J. Howie, Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series 12. Oxford University Press, New York, Second Edition, 2003.

A. Kechris, Classical Descriptive Set Theory. Graduate Texts in Mathematics 156. Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-4190-4

A. Kechris, and C. Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. 94, no. 2 (2008), 302-350. https://doi.org/10.1112/plms/pdl007

Z. Mesyan, J. Mitchell, and Y. Péresse, Topological transformation monoids, https://arxiv.org/abs/1809.04590, 2018.

J. Pérez, and C. Uzcátegui, Topologies on the symmetric inverse semigroup, Semigroup Forum 104 (2022), 398-414. https://doi.org/10.1007/s00233-021-10242-6

C. Rosendal, Automatic continuity of group homomorphisms, Bull. Symbolic Logic 15, no. 2 (2009), 184-214. https://doi.org/10.2178/bsl/1243948486

C. Rosendal, and S. Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math. 162 (2007), 349-371. https://doi.org/10.1007/s11856-007-0102-y

M. Sabok, Automatic continuity for isometry groups, J. Inst. Math. Jussieu 18, no. 3 (2019), 561-590. https://doi.org/10.1017/S1474748017000135

C. Uzcátegui-Aylwin, Ideals on countable sets: a survey with questions, Rev. Integr. temas mat. 37, no. 1 (2019), 167-198. https://doi.org/10.18273/revint.v37n1-2019009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem