Mostrar el registro sencillo del ítem
dc.contributor.author | Saheli, Morteza | es_ES |
dc.contributor.author | Mohsenialhosseini, Seyed Ali Mohammad | es_ES |
dc.contributor.author | Saeidi Goraghani, Hadi | es_ES |
dc.date.accessioned | 2023-11-15T07:46:49Z | |
dc.date.available | 2023-11-15T07:46:49Z | |
dc.date.issued | 2023-10-02 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/199703 | |
dc.description.abstract | [EN] In this paper, φ-contractions are defined and then, some new fixed point theorems are established for certain nonlinear mappings associated with one-dimensional (c)-comparison functions in fuzzy metric spaces. Next, generalized φ-contractions are defined by using five-dimensional (c)-comparison functions, and the existence of fixed points for nonlinear maps on fuzzy metric spaces is studied. Moreover, some examples are given to illustrate our results. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fuzzy metric space | es_ES |
dc.subject | Multiple fixed point | es_ES |
dc.subject | Comparison function | es_ES |
dc.subject | φ-contraction | es_ES |
dc.subject | Weak φ-contraction | es_ES |
dc.title | On φ-contractions and fixed point results in fuzzy metric spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.17130 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Saheli, M.; Mohsenialhosseini, SAM.; Saeidi Goraghani, H. (2023). On φ-contractions and fixed point results in fuzzy metric spaces. Applied General Topology. 24(2):469-483. https://doi.org/10.4995/agt.2023.17130 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.17130 | es_ES |
dc.description.upvformatpinicio | 469 | es_ES |
dc.description.upvformatpfin | 483 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17130 | es_ES |
dc.description.references | S. Banach, Sur les operations dans les ensembles abstraits etleur application aux equations integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181 | es_ES |
dc.description.references | V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math. 19, no. 1 (2003), 7-22. | es_ES |
dc.description.references | V. Berinde, Error estimates for approximating fixed points of quasi contractions, General Mathematics 13 (2005), 23-34. | es_ES |
dc.description.references | V. Berinde, Iterative approximation of fixed points, Springer-Verlag, Berlin Heidelberg, 2007. https://doi.org/10.1109/SYNASC.2007.49 | es_ES |
dc.description.references | A. Chitra, and P. V. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc. 74 (1969), 660-665. | es_ES |
dc.description.references | J. Franklin, Methods of mathematical economics, Springer Verlag, New York, 1980. https://doi.org/10.1007/978-3-662-25317-5 | es_ES |
dc.description.references | A. George, and P. Veeramani,On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 | es_ES |
dc.description.references | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4 | es_ES |
dc.description.references | V. Gregori, and J.-J. Miñana, On fuzzy y-contractive sequences and fixed-point theorems, Fuzzy Sets and Systems 300 (2016), 93-101. https://doi.org/10.1016/j.fss.2015.12.010 | es_ES |
dc.description.references | V. Gregori, and J.-J. Miñana, Some remarks on fuzzy contractive mappings, Fuzzy Sets and Systems 251 (2014), 101--103. https://doi.org/10.1016/j.fss.2014.01.002 | es_ES |
dc.description.references | V. Gregori, J. -J. Miñana, and D. Miravet, Contractive sequences in fuzzy metric spaces, Fuzzy Sets and Systems 379 (2020), 125-133. https://doi.org/10.1016/j.fss.2019.01.003 | es_ES |
dc.description.references | V. Gregori, J. -J. Miñana, and D. Miravet, Extended fuzzy metrics and fixed point theorems, Mathematics 7 (3) (2019), Article 303. https://doi.org/10.3390/math7030303 | es_ES |
dc.description.references | V. Gregori, J. -J. Miñana, and S. Morillas, On completable fuzzy metric spaces, Fuzzy Sets and Systems 267 (2015), 133-139. https://doi.org/10.1016/j.fss.2014.07.009 | es_ES |
dc.description.references | V. Gregori, and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9 | es_ES |
dc.description.references | K. Kramosil, and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), 336-344. | es_ES |
dc.description.references | D. Mihet, Erratum to "Fuzzy y-contractive mappings in non-Archimedean fuzzy metric spaces, [Fuzzy Sets and Systems 159 (2008), 739-744]", Fuzzy Sets and Systems 161 (2010), 1150-1151. https://doi.org/10.1016/j.fss.2007.07.006 | es_ES |
dc.description.references | D. Mihet, Fuzzy y-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006 | es_ES |
dc.description.references | J. J. Nieto, and R. Rodríguez-López, Contractive mappings theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5 | es_ES |
dc.description.references | H. K. Pathak, and N. Hussain, Common fixed points for Banach pairs with applications, Nonlinear Anal. 69 (2008), 2788-2802. https://doi.org/10.1016/j.na.2007.08.051 | es_ES |
dc.description.references | B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4 | es_ES |
dc.description.references | S. Shukla, D. Gopal, and W. Sintunavarat, A new class of fuzzy contractive mappings and fixed-point theorems, Fuzzy Sets and Systems 350 (2018), 85-94. https://doi.org/10.1016/j.fss.2018.02.010 | es_ES |