Mostrar el registro sencillo del ítem
dc.contributor.author | Abbas, Mujahid![]() |
es_ES |
dc.contributor.author | Anjum, Rizwan![]() |
es_ES |
dc.contributor.author | Anwar, Rabia![]() |
es_ES |
dc.date.accessioned | 2023-11-15T07:51:19Z | |
dc.date.available | 2023-11-15T07:51:19Z | |
dc.date.issued | 2023-10-02 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/199707 | |
dc.description.abstract | [EN] In this note, we show that the main result (Theorem 3.2) due to Asim et al. (Appl. Gen. Topol., 23(2), 363-376 (2022) https://doi.org/10.4995/agt.2022.17418) is still valid if we remove the assumption of continuity of the mapping. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | F-contraction | es_ES |
dc.subject | Rectangular M-metric space | es_ES |
dc.title | A note on the fixed point theorem of F-contraction mappings in rectangular M-metric space | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.18557 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Abbas, M.; Anjum, R.; Anwar, R. (2023). A note on the fixed point theorem of F-contraction mappings in rectangular M-metric space. Applied General Topology. 24(2):343-358. https://doi.org/10.4995/agt.2023.18557 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.18557 | es_ES |
dc.description.upvformatpinicio | 343 | es_ES |
dc.description.upvformatpfin | 358 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\18557 | es_ES |
dc.description.references | M. Abbas, R. Anjum, and V. Berinde, Equivalence of certain iteration processes obtained by two new classes of operators, Mathematics 9, no. 8 (2021), 2292. https://doi.org/10.3390/math9182292 | es_ES |
dc.description.references | M. Abbas, R. Anjum and V. Berinde, Enriched multivalued contractions with applications to differential inclusions and dynamic programming, Symmetry 13, no. 8 (2021), 1350. https://doi.org/10.3390/sym13081350 | es_ES |
dc.description.references | M. Abbas, R. Anjum and H. Iqbal, Generalized enriched cyclic contractions with application to generalized iterated function system, Chaos, Solitons and Fractals 154 (2022), 111591. https://doi.org/10.1016/j.chaos.2021.111591 | es_ES |
dc.description.references | M. Abbas, R. Anjum and N. Ismail, Approximation of fixed points of enriched asymptotically nonexpansive mappings in CAT (0) spaces, Rend. Circ. Mat. Palermo, II. Ser. 72 (2023), 2409-2427. https://doi.org/10.1007/s12215-022-00806-y | es_ES |
dc.description.references | M. Abbas, R. Anjum and S. Riasat, A new type of fixed point theorem via interpolation of operators with application in homotopy theory, Arab. J. Math. 12 (2023), 277-288. https://doi.org/10.1007/s40065-022-00402-z | es_ES |
dc.description.references | M. Abbas, R. Anjum and S. Riasat, Fixed point results of enriched interpolative Kannan type operators with applications, Appl. Gen. Topol. 23, no. 2 (2022), 391-404. https://doi.org/10.4995/agt.2022.16701 | es_ES |
dc.description.references | I. Altun, H. Sahin and D. Turkoglu, Fixed point results for multivalued mappings of Feng-Liu type on M-metric spaces, J. Nonlinear Funct. Anal. 18 (2014), 1-8. | es_ES |
dc.description.references | R. Anjum and M. Abbas, Common Fixed point theorem for modified Kannan enriched contraction pair in Banach spaces and its applications, Filomat. 35, no. 8 (2021), 2485-2495. https://doi.org/10.2298/FIL2108485A | es_ES |
dc.description.references | R. Anjum and M. Abbas, Fixed point property of a nonempty set relative to the class of friendly mappings, RACSAM 116 (2022), 32. https://doi.org/10.1007/s13398-021-01158-5 | es_ES |
dc.description.references | R. Anjum, N. Ismail and A. Bartwal, Implication between certain iterative processes via some enriched mappings, The Journal of Analysis (2023). https://doi.org/10.1007/s41478-023-00558-7 | es_ES |
dc.description.references | M. Asadi, Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications, Fixed Point Theory and Applications 210 (2015), 1-10. https://doi.org/10.1186/s13663-015-0460-9 | es_ES |
dc.description.references | M. Asadi, On Ekeland's variational principle in M-metric spaces, Journal of Nonlinear and Convex Analysis 17, no. 6 (2016), 1151-1158. | es_ES |
dc.description.references | M. Asadi, E. Karapinar and P. Salimi, New extension of p-metric spaces with some fixed point results on M-metric spaces, J. Inequal. Appl. 18 (2014). https://doi.org/10.1186/1029-242X-2014-18 | es_ES |
dc.description.references | M. Asadi, B. Moeini, A. Mukheimer and H. Aydi, Complex valued M-metric spaces and related fixed point results via complex C-class function, Journal of Inequalities and Special Functions 10, no. 1 (2019), 101-110. | es_ES |
dc.description.references | M. Asim, S. Mujahid and I. Uddin, Fixed point theorems for F-contraction mapping in complete rectangular M-metric space, Appl. Gen. Topol. 23, no. 1 (2022), 363-376. https://doi.org/10.4995/agt.2022.17418 | es_ES |
dc.description.references | S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181 | es_ES |
dc.description.references | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces (2000), 31-37. https://doi.org/10.5486/PMD.2000.2133 | es_ES |
dc.description.references | Z. Y. Gao and P. Sheng, Fixed point theorems for F-contraction in complete generalized metric spaces, 38, no. 4 (2018), 655-662. | es_ES |
dc.description.references | S. Matthews, Partial metric topology, Ann. N.Y. Acad. Sci. 728 (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x | es_ES |
dc.description.references | B. Moeini, M. Asadi, H. Aydi and M. S. Noorani, $C^*$-algebra-valued M-metric spaces and some related fixed point results, Ital. J. Pure Appl. 41 (2019), 708-723. | es_ES |
dc.description.references | H. Monfared, M. Azhini and M. Asadi, Fixed point results on M-metric spaces, J. Math. Anal. 7, no. 5 (2016), 85-101. | es_ES |
dc.description.references | H. Monfared, M. Asadi, M. Azhini and D. O'Regan, F (ψ,φ)-Contractions for α -admissible mappings on M-metric spaces, Fixed Point Theory and Applications 22 (2018), 1-17. https://doi.org/10.1186/s13663-018-0647-y | es_ES |
dc.description.references | H. Monfared, M. Azhini and M. Asadi, C-class and F(ψ,φ)-contractions on M-metric spaces, International Journal of Nonlinear Analysis and Applications 8, no. 1 (2017), 209-224. | es_ES |
dc.description.references | H. Monfared, M. Azhini and M. Asadi, A generalized contraction principle with control function on M-metric spaces, J. Nonlinear Funct. Anal. 22, no. 5 (2017), 395-402. | es_ES |
dc.description.references | N. Y. Özgür, N. Mlaiki, N. Taş and N. Souayah, A new generalization of metric spaces: rectangular M-metric spaces, Mathematical Sciences. 12, no. 3 (2018), 223-233. https://doi.org/10.1007/s40096-018-0262-4 | es_ES |
dc.description.references | H. Sahin, I. Altun and D. Turkoglu, Two fixed point results for multivalued F-contractions on M-metric spaces, RACSAM 113, no. 3 (2019), 1839-1849. https://doi.org/10.1007/s13398-018-0585-x | es_ES |
dc.description.references | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point The. Appl. (2012), 1-6. https://doi.org/10.1186/1687-1812-2012-94 | es_ES |