Mostrar el registro sencillo del ítem
dc.contributor.author | He, Shi-Yao | es_ES |
dc.contributor.author | Jin, Ying-Ying | es_ES |
dc.contributor.author | Xie, Li-Hong | es_ES |
dc.date.accessioned | 2023-11-15T08:29:32Z | |
dc.date.available | 2023-11-15T08:29:32Z | |
dc.date.issued | 2023-10-02 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/199728 | |
dc.description.abstract | [EN] In this paper, we introduce some concepts of ★-(quasi)-pseudometric spaces, and give an example which shows that there is a ★-quasi-pseudometric space which is not a quasi-pseudometric space. We also study the conditions under which ★-quasi-pseudometric semitopological groups are paratopological groups or topological groups. | es_ES |
dc.description.sponsorship | This research is supported by the Natural Science Foundation of Guangdong Province under Grant (Nos.2021A1515010381, 2020A1515110458), the Innovation Project of Department of Education of Guangdong Province (No. 2022KTSCX145), the Natural Science Project of Jiangmen City (No. 2021030102570004880). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Topological group | es_ES |
dc.subject | Paratopological groups | es_ES |
dc.subject | Topological semigroup | es_ES |
dc.subject | Invariant ★-(quasi-)pseudometric | es_ES |
dc.title | ★-quasi-pseudometrics on algebraic structures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.19303 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2021A1515010381 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2020A1515110458 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DEGP//2022KTSCX145 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Bureau of Science and Technology of Jiangmen Municipality//2021030102570004880 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | He, S.; Jin, Y.; Xie, L. (2023). ★-quasi-pseudometrics on algebraic structures. Applied General Topology. 24(2):253-265. https://doi.org/10.4995/agt.2023.19303 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.19303 | es_ES |
dc.description.upvformatpinicio | 253 | es_ES |
dc.description.upvformatpfin | 265 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\19303 | es_ES |
dc.contributor.funder | Natural Science Foundation of Guangdong Province | es_ES |
dc.contributor.funder | Department of Education of Guangdong Province | es_ES |
dc.contributor.funder | Bureau of Science and Technology of Jiangmen Municipality | es_ES |
dc.description.references | A. V. Arhangel'skii and M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Press, World Sci., 2008. https://doi.org/10.2991/978-94-91216-35-0 | es_ES |
dc.description.references | N. Brand, Another note on the continuity of the inverse, Arch. Math. 39 (1982), 241-245. https://doi.org/10.1007/BF01899530 | es_ES |
dc.description.references | R. Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc 8 (1957), 372-373. https://doi.org/10.1090/S0002-9939-1957-0083681-9 | es_ES |
dc.description.references | A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 | es_ES |
dc.description.references | A. George and P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math. 3 (1995), 933-940. https://doi.org/10.1016/0165-0114(94)90162-7 | es_ES |
dc.description.references | A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Syst. 90 (1997), 365-368. https://doi.org/10.1016/S0165-0114(96)00207-2 | es_ES |
dc.description.references | V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Syst. 115 (2000), 485-489. https://doi.org/10.1016/S0165-0114(98)00281-4 | es_ES |
dc.description.references | V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol. 5 (2004), 129-136. https://doi.org/10.4995/agt.2004.2001 | es_ES |
dc.description.references | S. Y. He, L. H. Xie and P.-F. Yan, On ★-metric spaces, Filomat 36, no. 18 (2022), 6173-6185. https://doi.org/10.2298/FIL2218173H | es_ES |
dc.description.references | I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 326-334. | es_ES |
dc.description.references | S. M. A. Khatami and M. Mirzavaziri, Yet another generalization of the notion of a metric space, arXiv:2009.00943v1 (2020). | es_ES |
dc.description.references | C. Liu, Metrizability of paratopological (semitopological) groups, Topology Appl. 159 (2012), 1415-1420. https://doi.org/10.1016/j.topol.2012.01.002 | es_ES |
dc.description.references | J. R. Munkres, Topology (2nd Edition), Prentice Hall, New Jersey, 2000. | es_ES |
dc.description.references | O. V. Ravsky, Paratopological groups I, Mat. Stud. 16 (2001), 37-48. | es_ES |
dc.description.references | S. Romaguera and M. Sanchis, On fuzzy metric groups, Fuzzy Sets Syst. 124 (2001), 109-115. https://doi.org/10.1016/S0165-0114(00)00085-3 | es_ES |
dc.description.references | I. Sánchez and M. Sanchis, Fuzzy quasi-pseudometrics on algebraic structures, Fuzzy Sets Syst. 330 (2018), 79-86. https://doi.org/10.1016/j.fss.2017.05.022 | es_ES |
dc.description.references | I. Sánchez and M. Sanchis, Complete invariant fuzzy metrics on groups, Fuzzy Sets Syst. (2018), 41-51. https://doi.org/10.1016/j.fss.2016.12.019 | es_ES |
dc.description.references | J. J. Tu and L. H. Xie, Complete invariant fuzzy metrics on semigroups and groups, J. Appl. Anal. Comput. 11 (2020), 766-771. https://doi.org/10.11948/20190394 | es_ES |
dc.description.references | W. Zelazko, A theorem on $B_{0}$ division algebras, Bull. Acad. Pol. Sci. 8 (1960), 373-375. | es_ES |