- -

Long-term changes in rainfed olive production, rainfall and farmer's income in Bailén (Jaén, Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long-term changes in rainfed olive production, rainfall and farmer's income in Bailén (Jaén, Spain)

Mostrar el registro completo del ítem

Rodrigo-Comino, J.; Senciales-Gonzalez, JM.; Yu, Y.; Salvati, L.; Giménez Morera, A.; Cerda, A. (2021). Long-term changes in rainfed olive production, rainfall and farmer's income in Bailén (Jaén, Spain). Euro-Mediterranean Journal for Environmental Integration. 6(2):1-15. https://doi.org/10.1007/s41207-021-00268-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199844

Ficheros en el ítem

Metadatos del ítem

Título: Long-term changes in rainfed olive production, rainfall and farmer's income in Bailén (Jaén, Spain)
Autor: Rodrigo-Comino, Jesús Senciales-Gonzalez, Jose Maria Yu, Yang Salvati, Luca Giménez Morera, Antonio Cerda, Artemi
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Fecha difusión:
Resumen:
[EN] Economic, social, and climatic conditions affect agricultural production. Those changes are relevant to the rainfed agricultural areas of the Mediterranean Belt, including Spain-the largest producer of olive oil in ...[+]
Palabras clave: Farmers , Rainfall , Olive groves , Economy , Production
Derechos de uso: Reconocimiento (by)
Fuente:
Euro-Mediterranean Journal for Environmental Integration. (issn: 2365-6433 )
DOI: 10.1007/s41207-021-00268-1
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/s41207-021-00268-1
Tipo: Artículo

References

Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J, Llansó P (2003) Guidelines on climate metadata and homogenization (WMO/TD no. 1186). World Meteorological Organization, Geneva

Aguilera F, Ruiz Valenzuela L (2009) Study of the floral phenology of Olea europaea L. in Jaén province (SE Spain) and its relation with pollen emission. Aerobiologia 25:217. https://doi.org/10.1007/s10453-009-9127-5

Almonacid G, Martínez S (2018) The rise of the Mediterranean woody crops in Southern Spain. Sci Technol Dev J Soc Sci Humanit 2:5–16. https://doi.org/10.32508/stdjssh.v2i1.473 [+]
Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J, Llansó P (2003) Guidelines on climate metadata and homogenization (WMO/TD no. 1186). World Meteorological Organization, Geneva

Aguilera F, Ruiz Valenzuela L (2009) Study of the floral phenology of Olea europaea L. in Jaén province (SE Spain) and its relation with pollen emission. Aerobiologia 25:217. https://doi.org/10.1007/s10453-009-9127-5

Almonacid G, Martínez S (2018) The rise of the Mediterranean woody crops in Southern Spain. Sci Technol Dev J Soc Sci Humanit 2:5–16. https://doi.org/10.32508/stdjssh.v2i1.473

Amate JI, de Molina MG, Vanwalleghem T, Fernández DS, Gómez JA (2013) Erosion in the Mediterranean: the case of olive groves in the South of Spain (1752–2000). Environ Hist 18:360–382. https://doi.org/10.1093/envhis/emt001

Araya A, Keesstra SD, Stroosnijder L (2010) A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia. Agric For Meteorol 150:1057–1064. https://doi.org/10.1016/j.agrformet.2010.04.003

Areal FJ, Riesgo L (2014) Farmers’ views on the future of olive farming in Andalusia, Spain. Land Use Policy 36:543–553. https://doi.org/10.1016/j.landusepol.2013.10.005

Arenas-Castro S, Gonçalves JF, Moreno M, Villar R (2020) Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci Total Environ 709:136161. https://doi.org/10.1016/j.scitotenv.2019.136161

Ashenfelter O, Storchmann K (2010) Using hedonic models of solar radiation and weather to assess the economic effect of climate change: the case of Mosel Valley vineyards. Rev Econ Stat 92:333–349. https://doi.org/10.1162/rest.2010.11377

Assefa F, Elias E, Soromessa T, Ayele GT (2020) Effect of changes in land-use management practices on soil physicochemical properties in Kabe Watershed, Ethiopia. Air Soil Water Res 13:1178622120939587. https://doi.org/10.1177/1178622120939587

Barneveld RJ, Bruggeman A, Sterk G, Turkelboom F (2009) Comparison of two methods for quantification of tillage erosion rates in olive orchards of north-west Syria. Soil Tillage Res 103:105–112

Benites J, Pisante M, Stagnari F (2005) Integrated soil and water management for orchard development: role and importance.  In: Benites J, Pisante M, Stagnari F (eds) Proceedings of the international seminar “Integrated soil and water management for orchard development—role and importance.” Food and Agriculture Organization, Rome

Benmehaia AM, Merniz N, Oulmane A (2020) Spatiotemporal analysis of rainfed cereal yields across the eastern high plateaus of Algeria: an exploratory investigation of the effects of weather factors. Euro-Mediterr J Environ Integr 5:54. https://doi.org/10.1007/s41207-020-00191-x

Berg H, Maneas G, Salguero Engström A (2018) A comparison between organic and conventional olive farming in Messenia, Greece. Horticulturae 4:15. https://doi.org/10.3390/horticulturae4030015

Birch CJ, Stephen K, McLean G, Doherty A, Hammer GL, Robertson MJ (2008) Reliability of production of quick to medium maturity maize in areas of variable rainfall in north-east Australia. Aust J Exp Agric 48:326–334. https://doi.org/10.1071/EA06104

Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production. Food and Agriculture Organization, Rome

Braudel F (1996) The Mediterranean and the Mediterranean World in the age of Philip II, vol 1. University of California Press, Berkeley

Cabezas JM, Ruiz-Ramos M, Soriano MA, Gabaldón-Leal C, Santos C, Lorite IJ (2020) Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric Syst 185:102937. https://doi.org/10.1016/j.agsy.2020.102937

Calzadilla A, Zhu T, Rehdanz K, Tol RSJ, Ringler C (2013) Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Ecol Econ 93:150–165. https://doi.org/10.1016/j.ecolecon.2013.05.006

Cerdà A, Rodrigo-Comino J (2020) Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrol Hydrobiol 20:59–72. https://doi.org/10.1016/j.ecohyd.2019.05.006

Cerdà A, Rodrigo-Comino J (2021) Regional farmers’ perception and societal issues in vineyards affected by high erosion rates. Land 10:205. https://doi.org/10.3390/land10020205

Cerdà A, Daliakopoulos IN, Terol E, Novara A, Fatahi Y, Moradi E, Salvati L, Pulido M (2021a) Long-term monitoring of soil bulk density and erosion rates in two Prunus persica (L.) plantations under flood irrigation and glyphosate herbicide treatment in La Ribera District, Spain. J Environ Manag 282:111965. https://doi.org/10.1016/j.jenvman.2021.111965

Cerdà A, Novara A, Dlapa P, López-Vicente M, Úbeda X, Popović Z, Mekonnen M, Terol E, Janizadeh S, Mbarki S, Saldanha-Vogelmann E, Hazrati S, Sannigrahi S, Parhizkar M, Giménez-Morera A (2021b) Rainfall and water yield in Macizo del Caroig, Eastern Iberian Peninsula. Event runoff at plot scale during a rare flash flood at the Barranco de Benacancil. Cuad Investig Geogr 47:95–119. https://doi.org/10.18172/cig.4833

Chabbi A, Lehmann J, Ciais P, Loescher HW, Cotrufo MF, Don A, SanClements M, Schipper L, Six J, Smith P, Rumpel C (2017) Aligning agriculture and climate policy. Nat Clim Change 7:307–309. https://doi.org/10.1038/nclimate3286

Cicatelli A, Fortunati T, De Feis I, Castiglione S (2013) Oil composition and genetic biodiversity of ancient and new olive (Olea europea L.) varieties and accessions of southern Italy. Plant Sci 210:82–92. https://doi.org/10.1016/j.plantsci.2013.05.011

Conde C, Delrot S, Gerós H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. J Plant Physiol 165:1545–1562. https://doi.org/10.1016/j.jplph.2008.04.018

Coughlan de Perez E, van Aalst M, Choularton R, van den Hurk B, Mason S, Nissan H, Schwager S (2019) From rain to famine: assessing the utility of rainfall observations and seasonal forecasts to anticipate food insecurity in East Africa. Food Sec 11:57–68. https://doi.org/10.1007/s12571-018-00885-9

De Luca AI, Falcone G, Stillitano T, Iofrida N, Strano A, Gulisano G (2018) Evaluation of sustainable innovations in olive growing systems: a life cycle sustainability assessment case study in southern Italy. J Clean Prod 171:1187–1202. https://doi.org/10.1016/j.jclepro.2017.10.119

Delgado B, Ojeda JF, Amate JI, Andreu C (2013) Los olivares andaluces y sus paisajes distintivos del mundo mediterráneo. Rev Estud Reg 96:267–291

Duarte F, Jones N, Fleskens L (2008) Traditional olive orchards on sloping land: sustainability or abandonment? J Environ Manag 89:86–98. https://doi.org/10.1016/j.jenvman.2007.05.024

Emmanouilides C, Fousekis P, Grigoriadis V (2013) Price dependence in the principal EU olive oil markets. Span J Agric Res 12:3. https://doi.org/10.5424/sjar/2014121-4606

Famiani F, Farinelli D, Gardi T, Rosati A (2019) The cost of flowering in olive (Olea europaea L.). Sci Hortic 252:268–273. https://doi.org/10.1016/j.scienta.2019.03.008

Fernández-Hernández A, Roig A, Serramiá N, Civantos CG-O, Sánchez-Monedero MA (2014) Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality. Waste Manag 34:1139–1147. https://doi.org/10.1016/j.wasman.2014.03.027

Finger R, Hediger W, Schmid S (2011) Irrigation as adaptation strategy to climate change—a biophysical and economic appraisal for Swiss maize production. Clim Change 105:509–528. https://doi.org/10.1007/s10584-010-9931-5

Fraga H, Pinto JG, Santos JA (2019) Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Clim Change 152:179–193. https://doi.org/10.1007/s10584-018-2337-5

Fraga H, Pinto JG, Viola F, Santos JA (2020) Climate change projections for olive yields in the Mediterranean Basin. Int J Climatol 40:769–781. https://doi.org/10.1002/joc.6237

Galán C, García-Mozo H, Vázquez L, Ruiz L, de la Guardia CD, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188. https://doi.org/10.1007/s00484-004-0223-5

García-Mozo H, Galán C, Jato V, Belmonte J (2006) Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209–224

Gimeno E, Fitó M, Lamuela-Raventós RM, Castellote AI, Covas M, Farré M, de la Torre-Boronat M, López-Sabater MC (2002) Effect of ingestion of virgin olive oil on human low-density lipoprotein composition. Eur J Clin Nutr 56:114–120. https://doi.org/10.1038/sj.ejcn.1601293

Gómez JA, Giráldez JV, Pastor M, Fereres E (1999) Effects of tillage method on soil physical properties, infiltration and yield in an olive orchard. Soil Tillage Res 52:167–175. https://doi.org/10.1016/S0167-1987(99)00078-1

Gómez-Limón JA, Picazo-Tadeo AJ, Reig-Martínez E (2012) Eco-efficiency assessment of olive farms in Andalusia. Land Use Policy 29:395–406. https://doi.org/10.1016/j.landusepol.2011.08.004

Graef F, Haigis J (2001) Spatial and temporal rainfall variability in the Sahel and its effects on farmers’ management strategies. J Arid Environ 48:221–231. https://doi.org/10.1006/jare.2000.0747

Haghtalab N, Moore N, Ngongondo C (2019) Spatio-temporal analysis of rainfall variability and seasonality in Malawi. Reg Environ Change 19:2041–2054. https://doi.org/10.1007/s10113-019-01535-2

Harris D, Orr A (2014) Is rainfed agriculture really a pathway from poverty? Agric Syst 123:84–96. https://doi.org/10.1016/j.agsy.2013.09.005

Hiernaux P, Ayantunde A, Kalilou A, Mougin E, Gérard B, Baup F, Grippa M, Djaby B (2009) Trends in productivity of crops, fallow and rangelands in Southwest Niger: impact of land use, management and variable rainfall. J Hydrol 375:65–77. https://doi.org/10.1016/j.jhydrol.2009.01.032

Hofmeister B (1971) Four types of agriculture with predominant olive growing in Southern Spain—a case study. Geoforum 2:15–30. https://doi.org/10.1016/0016-7185(71)90027-3

Incerti G, Feoli E, Salvati L, Brunetti A, Giovacchini A (2007) Analysis of bioclimatic time series and their neural network-based classification to characterise drought risk patterns in South Italy. Int J Biometeorol 51:253–263. https://doi.org/10.1007/s00484-006-0071-6

Infante-Amate J, de Molina MG (2013) The socio-ecological transition on a crop scale: the case of olive orchards in Southern Spain (1750–2000). Hum Ecol 41:961–969. https://doi.org/10.1007/s10745-013-9618-4

Iwasaki E, Elbeih S, Shalaby A, Khedr H, Zaghloul ES (2020) Wells and land use changes in Dakhla Oasis (Egypt) using geospatial analysis: case study of Rashda village. Euro-Mediterr J Environ Integr 5:61. https://doi.org/10.1007/s41207-020-00202-x

Jiménez EA, Simón VJG, Martínez JDS (2002) El olivar regado en la provincia de Jaén. Investig Geogr 0:5–32. https://doi.org/10.14198/INGEO2002.28.03

Kairis O, Karavitis C, Kounalaki A, Salvati L, Kosmas C (2013) The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag 29:597–606. https://doi.org/10.1111/sum.12074

Kairis O, Karavitis C, Salvati L, Kounalaki A, Kosmas K (2015) Exploring the impact of overgrazing on soil erosion and land degradation in a dry Mediterranean agro-forest landscape (Crete, Greece). Arid Land Res Manag 29:360–374. https://doi.org/10.1080/15324982.2014.968691

Karamesouti M, Detsis V, Kounalaki A, Vasiliou P, Salvati L, Kosmas C (2015) Land-use and land degradation processes affecting soil resources: evidence from a traditional Mediterranean cropland (Greece). CATENA 132:45–55. https://doi.org/10.1016/j.catena.2015.04.010

Keesstra S, Mol G, De Leeuw J, Okx J, Molenaar C, De Cleen M, Visser S (2018a) Soil-related sustainable development goals: four concepts to make land degradation neutrality and restoration work. Land 7:133. https://doi.org/10.3390/land7040133

Keesstra S, Nunes JP, Saco P, Parsons T, Poeppl R, Masselink R, Cerdà A (2018b) The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci Total Environ 644:1557–1572. https://doi.org/10.1016/j.scitotenv.2018.06.342

Kosmas C, Karamesouti M, Kounalaki K, Detsis V, Vassiliou P, Salvati L (2016) Land degradation and long-term changes in agro-pastoral systems: an empirical analysis of ecological resilience in Asteroussia—Crete (Greece). CATENA 147:196–204. https://doi.org/10.1016/j.catena.2016.07.018

Kurukulasuriya P, Kala N, Mendelsohn R (2011) Adaptation and climate change impacts: a structural Ricardian model of irrigation and farm income in Africa. Clim Change Econ 02:149–174. https://doi.org/10.1142/S2010007811000255

Kyei-Mensah C, Kyerematen R, Adu-Acheampong S (2019) Impact of rainfall variability on crop production within the Worobong Ecological Area of Fanteakwa District, Ghana. Adv Agric. https://doi.org/10.1155/2019/7930127

Longobardi P, Montenegro A, Beltrami H, Eby M (2016) Deforestation induced climate change: effects of spatial scale. PLoS ONE 11:1–34. https://doi.org/10.1371/journal.pone.0153357

López-Vicente M, Álvarez S (2018) Stability and patterns of topsoil water content in rainfed vineyards, olive groves, and cereal fields under different soil and tillage conditions. Agric Water Manag 201:167–176. https://doi.org/10.1016/j.agwat.2018.02.004

Marin C, Ramirez R, Delgado-Lista J, Yubero-Serrano EM, Perez-Martinez P, Carracedo J, Garcia-Rios A, Rodriguez F, Gutierrez-Mariscal FM, Gomez P, Perez-Jimenez F, Lopez-Miranda J (2011) Mediterranean diet reduces endothelial damage and improves the regenerative capacity of endothelium. Am J Clin Nutr 93:267–274. https://doi.org/10.3945/ajcn.110.006866

Marques M, Ruiz-Colmenero M, Bienes R, García-Díaz A, Sastre B (2020) Effects of a permanent soil cover on water dynamics and wine characteristics in a steep vineyard in the Central Spain. Air Soil Water Res 13:1178622120948069. https://doi.org/10.1177/1178622120948069

Martínez JDS, Simón VJG (2011) La nueva reconversión productiva del olivar jiennense: aproximación inicial a sus fundamentos y limitaciones. Cuad Geogr Univ Granada 49:95–121. https://doi.org/10.30827/cuadgeo.v49i0.567

Michalopoulos G, Kasapi KA, Koubouris G, Psarras G, Arampatzis G, Hatzigiannakis E, Kavvadias V, Xiloyannis C, Montanaro G, Malliaraki S, Angelaki A, Manolaraki C, Giakoumaki G, Reppas S, Kourgialas N, Kokkinos G (2020) Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate 8:54. https://doi.org/10.3390/cli8040054

Morris C, Winter M (1999) Integrated farming systems: the third way for European agriculture? Land Use Policy 16:193–205

Muluneh A, Biazin B, Stroosnijder L, Bewket W, Keesstra SD (2015) Impact of predicted changes in rainfall and atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley of Ethiopia. Reg Environ Change 15:1105–1119

Naredo JM (1983) La crisis del olivar como cultivo “biológico” tradicional. Agric Soc 26:167–288

Novara A, Pulido M, Rodrigo-Comino J, Prima SD, Smith P, Gristina L, Gimenez-Morera A, Terol E, Salesa D, Keesstra S (2019) Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuad Investig Geogr 45:271–286. https://doi.org/10.18172/cig.3794

Novara A, Cerda A, Barone E, Gristina L (2021) Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res 208:104896. https://doi.org/10.1016/j.still.2020.104896

Oteros J, Orlandi F, García-Mozo H, Aguilera F, Dhiab AB, Bonofiglio T, Abichou M, Ruiz-Valenzuela L, del Trigo MM, Díaz de la Guardia C, Domínguez-Vilches E, Msallem M, Fornaciari M, Galán C (2014) Better prediction of Mediterranean olive production using pollen-based models. Agron Sustain Dev 34:685–694. https://doi.org/10.1007/s13593-013-0198-x

Palese AM, Pergola M, Favia M, Xiloyannis C, Celano G (2013) A sustainable model for the management of olive orchards located in semi-arid marginal areas: some remarks and indications for policy makers. Environ Sci Policy 27:81–90. https://doi.org/10.1016/j.envsci.2012.11.001

Parsons DJ, Rey D, Tanguy M, Holman IP (2019) Regional variations in the link between drought indices and reported agricultural impacts of drought. Agric Syst 173:119–129. https://doi.org/10.1016/j.agsy.2019.02.015

Perujo Villanueva M, Colombo S (2017) Cost analysis of parcel fragmentation in agriculture: the case of traditional olive cultivation. Biosyst Eng 164:135–146. https://doi.org/10.1016/j.biosystemseng.2017.10.003

Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A (2014) Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. PNAS 111:5598–5603. https://doi.org/10.1073/pnas.1314437111

Rao KPC, Ndegwa WG, Kizito K, Oyoo A (2011) Climate variability and change: farmer perceptions and understanding of intra-seasonal variability in rainfall and associated risk in semi-arid Kenya. Exp Agric 47:267–291. https://doi.org/10.1017/S0014479710000918

Reiser H, Kutiel H (2010) Rainfall uncertainty in the Mediterranean: dryness distribution. Theor Appl Climatol 100:123–135. https://doi.org/10.1007/s00704-009-0163-4

Rocamora-Montiel B, Glenk K, Colombo S (2014) Territorial management contracts as a tool to enhance the sustainability of sloping and mountainous olive orchards: evidence from a case study in Southern Spain. Land Use Policy 41:313–324. https://doi.org/10.1016/j.landusepol.2014.06.016

Rockström J, Karlberg L, Wani SP, Barron J, Hatibu N, Oweis T, Bruggeman A, Farahani J, Qiang Z (2010) Managing water in rainfed agriculture—the need for a paradigm shift. Agric Water Manag Compr Assess Water Manag Agric 97:543–550. https://doi.org/10.1016/j.agwat.2009.09.009

Rodrigo-Comino J, Keesstra SD, Cerdà A (2018a) Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surf Proc Land 43:2193–2206. https://doi.org/10.1002/esp.4385

Rodrigo-Comino J, Taguas E, Seeger M, Ries JB (2018b) Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. J Hydrol 556:749–758. https://doi.org/10.1016/j.jhydrol.2017.12.014

Rodrigo-Comino J, Giménez-Morera A, Panagos P, Pourghasemi HR, Pulido M, Cerdà A (2020a) The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: a biophysical and socioeconomic assessment. Land Degrad Dev 31:1877–1889. https://doi.org/10.1002/ldr.3305

Rodrigo-Comino J, Terol E, Mora G, Gimenez-Morera A, Cerdà A (2020b) Vicia sativa Roth. can reduce soil and water losses in recently planted vineyards (Vitis vinifera L). Earth Syst Environ. https://doi.org/10.1007/s41748-020-00191-5 (in press)

Rodrigo-Comino J, Salvia R, Quaranta G, Cudlín P, Salvati L, Gimenez-Morera A (2021) Climate aridity and the geographical shift of olive trees in a Mediterranean Northern Region. Climate 9:64. https://doi.org/10.3390/cli9040064

Salmoral G, Willaarts BA, Garrido A, Guse B (2017) Fostering integrated land and water management approaches: evaluating the water footprint of a Mediterranean basin under different agricultural land use scenarios. Land Use Policy 61:24–39. https://doi.org/10.1016/j.landusepol.2016.09.027

Salvati L, Perini L, Sabbi A, Bajocco S (2012) Climate aridity and land use changes: a regional-scale analysis. Geogr Res 50:193–203. https://doi.org/10.1111/j.1745-5871.2011.00723.x

Sánchez Martínez JD, Ortega Ruiz A (2016) The olive monoculture of Jaen: historical structure, heritage values and cultural-touristic importance. Cuad Turismo 37:377–538

Sastre B, Barbero-Sierra C, Bienes R, Marques MJ, García-Díaz A (2016) Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. J Soils Sediments. https://doi.org/10.1007/s11368-016-1589-9

Scarascia MEV, Battista FD, Salvati L (2006) Water resources in Italy: availability and agricultural uses. Irrig Drain 55:115–127. https://doi.org/10.1002/ird.222

Scheidel A, Krausmann F (2011) Diet, trade and land use: a socio-ecological analysis of the transformation of the olive oil system. Land Use Policy 28:47–56. https://doi.org/10.1016/j.landusepol.2010.04.008

Serra P, Vera A, Tulla AF, Salvati L (2014) Beyond urban–rural dichotomy: exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl Geogr 55:71–81. https://doi.org/10.1016/j.apgeog.2014.09.005

Sharma NK, Singh RJ, Mandal D, Kumar A, Alam NM, Keesstra S (2017) Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agric Ecosyst Environ 247:43–53. https://doi.org/10.1016/j.agee.2017.06.026

Shiel RS (2018) Agricultural systems research. In: Callan H, Coleman S (eds) The international encyclopedia of anthropology. Wiley, Chichester, pp 1–6. https://doi.org/10.1002/9781118924396.wbiea1992

Stooksbury DE, Idso CD, Hubbard KG (1999) The effects of data gaps on the calculated monthly mean maximum and minimum temperatures in the continental United States: a spatial and temporal study. J Clim 12:1524–1533. https://doi.org/10.1175/1520-0442(1999)012%3c1524:TEODGO%3e2.0.CO;2

Storchmann K (2005) English weather and Rhine wine quality: an ordered probit model. J Wine Res 16:105–120. https://doi.org/10.1080/09571260500327648

Taguas EV, Gómez JA (2015) Vulnerability of olive orchards under the current CAP (Common Agricultural Policy) regulations on soil erosion: a study case in Southern Spain. Land Use Policy 42:683–694. https://doi.org/10.1016/j.landusepol.2014.09.001

Taguas EV, Guzmán E, Guzmán G, Vanwalleghem T, Gómez JA (2015) Characteristics and importance of rill and gully erosion: a case study in a small catchment of a marginal olive grove. Cuad Investig Geogr 41:107–126. https://doi.org/10.18172/cig.2644

Tanasijevic L, Todorovic M, Pereira LS, Pizzigalli C, Lionello P (2014) Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric Water Manag 144:54–68. https://doi.org/10.1016/j.agwat.2014.05.019

Tekaya M, El-Gharbi S, Mechri B, Chehab H, Bchir A, Chraief I, Ayachi M, Boujnah D, Attia F, Hammami M (2016) Improving performance of olive trees by the enhancement of key physiological parameters of olive leaves in response to foliar fertilization. Acta Physiol Plant 38:101. https://doi.org/10.1007/s11738-016-2122-x

Thomas DSG, Twyman C, Osbahr H, Hewitson B (2007) Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Clim Change 83:301–322. https://doi.org/10.1007/s10584-006-9205-4

Turrini A, Caruso G, Avio L, Gennai C, Palla M, Agnolucci M, Tomei PE, Giovannetti M, Gucci R (2017) Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. Appl Soil Ecol 116:70–78. https://doi.org/10.1016/j.apsoil.2017.04.001

Tzouramani I, Mantziaris S, Karanikolas P (2020) Assessing sustainability performance at the farm level: examples from Greek agricultural systems. Sustainability 12:1–22

Urhausen S, Brienen S, Kapala A, Simmer C (2011) Climatic conditions and their impact on viticulture in the Upper Moselle region. Clim Change 109:349–373. https://doi.org/10.1007/s10584-011-0059-z

Vanwalleghem T, Amate JI, de Molina MG, Fernández DS, Gómez JA (2011) Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agr Ecosyst Environ 142:341–351. https://doi.org/10.1016/j.agee.2011.06.003

Vidal-Legaz B, Martínez-Fernández J, Picón AS, Pugnaire FI (2013) Trade-offs between maintenance of ecosystem services and socio-economic development in rural mountainous communities in southern Spain: a dynamic simulation approach. J Environ Manag 131:280–297. https://doi.org/10.1016/j.jenvman.2013.09.036

Villalobos O, Mateos (1995) Nondestructive measurements of leaf area index in olive (Olea europaea L.) trees using a gap inversion method. Agric For Meteorol 73:29–42

Visser S, Keesstra S, Maas G, de Cleen M, Molenaar C (2019) Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability 11:6792. https://doi.org/10.3390/su11236792

Wani SP, Rockström J, Oweis TY (2009) Rainfed agriculture: unlocking the potential. CABI, Wallingford

West H, Quinn N, Horswell M (2019) Remote sensing for drought monitoring and impact assessment: progress, past challenges and future opportunities. Remote Sens Environ 232:111291. https://doi.org/10.1016/j.rse.2019.111291

Yazdanbakhsh A, Alavi SN, Valadabadi SA, Karimi F, Karimi Z (2020) Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: a case study in Alborz city, Iran. Air Soil Water Res 13:1178622119898460. https://doi.org/10.1177/1178622119898460

Yu Y, Loiskandl W, Kaul H-P, Himmelbauer M, Wei W, Chen L, Bodner G (2016) Estimation of runoff mitigation by morphologically different cover crop root systems. J Hydrol 538:667–676. https://doi.org/10.1016/j.jhydrol.2016.04.060

Zema DA, Denisi P, Taguas Ruiz EV, Gómez JA, Bombino G, Fortugno D (2015) Evaluation of surface runoff prediction by AnnAGNPS model in a large Mediterranean watershed covered by olive groves. Land Degrad Dev 27:811–822. https://doi.org/10.1002/ldr.2390

Zipori I, Erel R, Yermiyahu U, Ben-Gal A, Dag A (2020) Sustainable management of olive orchard nutrition: a review. Agriculture 10:11. https://doi.org/10.3390/agriculture10010011

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem