Mostrar el registro sencillo del ítem
dc.contributor.author | Gutiérrez-Parera, Pablo | es_ES |
dc.contributor.author | López Monfort, José Javier | es_ES |
dc.contributor.author | Mora-Merchan, Javier M. | es_ES |
dc.contributor.author | Larios, Diego F. | es_ES |
dc.date.accessioned | 2023-11-15T19:01:38Z | |
dc.date.available | 2023-11-15T19:01:38Z | |
dc.date.issued | 2022-05-12 | es_ES |
dc.identifier.issn | 1687-4722 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199845 | |
dc.description.abstract | [EN] Head-related transfer function (HRTF) individualization can improve the perception of binaural sound. The interaural time difference (ITD) of the HRTF is a relevant cue for sound localization, especially in azimuth. Therefore, individualization of the ITD is likely to result in better sound spatial localization. A study of ITD has been conducted from a perceptual point of view using data from individual HRTF measurements and subjective perceptual tests. Two anthropometric dimensions have been demonstrated in relation to the ITD, predicting the subjective behavior of various subjects in a perceptual test. With this information, a method is proposed to individualize the ITD of a generic HRTF set by adapting it with a scale factor, which is obtained by a linear regression formula dependent on the two previous anthropometric dimensions. The method has been validated with both objective measures and another perceptual test. In addition, practical regression formula coefficients are provided for fitting the ITD of the generic HRTFs of the widely used Brüel & Kjær 4100 and Neumann KU100 binaural dummy heads. | es_ES |
dc.description.sponsorship | This work has received funding from the Spanish Ministry of Science and Innovation through the project RTI2018-097045-B-C22, and from the Spanish Ministry of Universities under the "Margarita Salas" program supported by the NextGenerationEU funds of the European Union. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | EURASIP Journal on Audio, Speech and Music Processing | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | HRTF | es_ES |
dc.subject | ITD | es_ES |
dc.subject | Spatial sound | es_ES |
dc.subject | Individualization | es_ES |
dc.subject | Anthropometric parameters | es_ES |
dc.subject | Perceptual test | es_ES |
dc.subject | Binaural dummy head | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Interaural time difference individualization in HRTF by scaling through anthropometric parameters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13636-022-00241-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097045-B-C22/ES/AUDIO ESPACIAL INTELIGENTE: SINTESIS Y PERSONALIZACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIVERSIDAD POLITECNICA DE VALENCIA//MS%2F43//AYUDA MARGARITA SALAS DE GUTIERREZ PARERA, PABLO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Gutiérrez-Parera, P.; López Monfort, JJ.; Mora-Merchan, JM.; Larios, DF. (2022). Interaural time difference individualization in HRTF by scaling through anthropometric parameters. EURASIP Journal on Audio, Speech and Music Processing. 2022(1):1-19. https://doi.org/10.1186/s13636-022-00241-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13636-022-00241-y | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2022 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\465417 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.description.references | H. Møller, Fundamentals of binaural technology. Appl. Acoust.36(3-4), 171–218 (1992). https://doi.org/10.1016/0003-682X(92)90046-U. | es_ES |
dc.description.references | H. Møller, M. F. Sørensen, C. B. Jensen, D. Hammershøi, Binaural technique: Do we need individual recordingsJ. Audio Eng. Soc.44(6), 451–464 (1996). | es_ES |
dc.description.references | V. R. Algazi, C. Avendano, R. O. Duda, Elevation localization and head-related transfer function analysis at low frequencies. J. Acoust. Soc. Am.109(3), 1110–1122 (2001). https://doi.org/10.1121/1.1349185. | es_ES |
dc.description.references | E. M. Wenzel, M. Arruda, D. J. Kistler, F. L. Wightman, Localization using nonindividualized head-related transfer functions. J. Acoust. Soc. Am.94(1), 111–123 (1993). https://doi.org/10.1121/1.407089. | es_ES |
dc.description.references | J. C. Middlebrooks, Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency,. J. Acoust. Soc. Am.106(3 Pt 1), 1493–1510 (1999). https://doi.org/10.1121/1.427147. | es_ES |
dc.description.references | D. R. Begault, E. M. Wenzel, M. R. Anderson, Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. J. Audio Eng. Soc.49(10), 904–916 (2001). | es_ES |
dc.description.references | B. U. Seeber, H. Fastl, in Proceedings of the 2003 International Conference on Auditory Display. Subjective selection of non-individual head-related transfer functions (Georgia Institute of TechnologyBoston University, 2003), pp. 1–4. | es_ES |
dc.description.references | J. C. Middlebrooks, Individual differences in external-ear transfer functions reduced by scaling in frequency. J. Acoust. Soc. Am.106(3), 1480–1492 (1999). https://doi.org/10.1121/1.427176. | es_ES |
dc.description.references | R. Pelzer, M. Dinakaran, F. Brinkmann, S. Lepa, P. Grosche, S. Weinzierl, Head-related transfer function recommendation based on perceptual similarities and anthropometric features. J. Acoust. Soc. Am.148(6), 3809–3817 (2020). https://doi.org/10.1121/10.0002884. | es_ES |
dc.description.references | E. A. Torres-Gallegos, F. Orduña-Bustamante, F. Arámbula-Cosío, Personalization of head-related transfer functions (HRTF) based on automatic photo-anthropometry and inference from a database. Appl. Acoust.97:, 84–95 (2015). https://doi.org/10.1016/j.apacoust.2015.04.009. | es_ES |
dc.description.references | F. Brinkmann, M. Dinakaran, R. Pelzer, P. Grosche, D. Voss, S. Weinzierl, A cross-evaluated database of measured and simulated HRTFs including 3D head meshes, anthropometric features, and headphone impulse responses. J. Audio Eng. Soc.67(9), 705–718 (2019). https://doi.org/10.17743/jaes.2019.0024. | es_ES |
dc.description.references | B. F. G. Katz, Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation. J. Acoust. Soc. Am.110(5), 2440–2448 (2001). https://doi.org/10.1121/1.1412440. | es_ES |
dc.description.references | A. Roginska, P. Geluso, Immersive Sound: the Art and Science of Binaural and Multi-channel Audio (Focal Press, New York, 2017). | es_ES |
dc.description.references | K. Sunder, J He, EL Tan, W-S Gan, Natural Sound Rendering for Headphones: Integration of signal processing techniques. IEEE Signal Proc. Mag.32(2), 100–113 (2015). https://doi.org/10.1109/MSP.2014.2372062. | es_ES |
dc.description.references | J. W. Strutt (Lord Rayleigh), On our perception of sound direction. Lond. Edinb. Dublin Philos. Mag. J. Sci.13(74), 214–232 (1907). https://doi.org/10.1080/14786440709463595. | es_ES |
dc.description.references | F. L. Wightman, D. J. Kistler, The dominant role of low-frequency inter aural time differences in sound localization. J. Acoust. Soc. Am.91(3), 1648–1661 (1992). https://doi.org/10.1121/1.402445. | es_ES |
dc.description.references | M. T. Pastore, J. Braasch, The impact of peripheral mechanisms on the precedence effect. J. Acoust. Soc. Am.146(1), 425–444 (2019). https://doi.org/10.1121/1.5116680. | es_ES |
dc.description.references | R. S. Woodworth, H. Schlosberg, Experimental Psychology, Rev. Ed (Holt, Oxford, 1954). | es_ES |
dc.description.references | G. F. Kuhn, Model for the interaural time differences in the azimuthal plane. J. Acoust. Soc. Am.62(1), 157–167 (1977). https://doi.org/10.1121/1.381498. | es_ES |
dc.description.references | V. Larcher, J. -M. Jot, in Proceedings of the Congrès Français d’Acoustique. Techniques d’interpolation de filtres audio-numérique, Application à la reproduction spatiale des sons sur écouteurs (Société française d’acoustique SFA, 1997). https://hal.archives-ouvertes.fr/hal-01106982. | es_ES |
dc.description.references | L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen, Creating Interactive Virtual Acoustic Environments. J. Audio Eng. Soc.47(9), 675–705 (1999). | es_ES |
dc.description.references | V. R. Algazi, C. Avendano, R. O. Duda, Estimation of a spherical-head model from anthropometry. J. Audio Eng. Soc.49(6), 472–479 (2001). https://doi.org/10.1017/CBO9781107415324.004. | es_ES |
dc.description.references | S. Busson, Individualisation d’indices acoustiques pour la synthèse binaurale. PhD thesis, Université de la Méditerranée - Aix-Marseille II (2006). | es_ES |
dc.description.references | V. R. Algazi, R. O. Duda, R. Duraiswami, N. A. Gumerov, Z. Tang, Approximating the head-related transfer function using simple geometric models of the head and torso. J. Acoust. Soc. Am.112(5), 2053–2064 (2002). https://doi.org/10.1121/1.1508780. | es_ES |
dc.description.references | R. O. Duda, C. Avendano, V. R. Algazi, in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol 2. An adaptable ellipsoidal head model for the interaural time difference (IEEE, 1999), pp. 965–968. https://doi.org/10.1109/ICASSP.1999.759855. | es_ES |
dc.description.references | R. Bomhardt, M. Lins, J. Fels, Analytical Ellipsoidal Model of Interaural Time Differences for the Individualization of Head-Related Impulse Responses. J. Audio Eng. Soc.64(11), 882–893 (2016). https://doi.org/10.17743/jaes.2016.0041. | es_ES |
dc.description.references | M. Aussal, F. Alouges, B. F. G. Katz, in Spatial Audio in Today’s 3D World - AES 25th UK Conference. ITD Interpolation and Personalization for Binaural Synthesis using Spherical Harmonics (Audio Engineering SocietyYork, England, 2012). | es_ES |
dc.description.references | P. Bilinski, J. Ahrens, M. R. P. Thomas, I. J. Tashev, J. C. Platt, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). HRTF magnitude synthesis via sparse representation of anthropometric features (IEEEFlorence, 2014), pp. 4468–4472. https://doi.org/10.1109/ICASSP.2014.6854447. | es_ES |
dc.description.references | R. Bomhardt, H. Braren, J. Fels, in Proceedings of Meetings on Acoustics, vol 29. Individualization of head-related transfer functions using principal component analysis and anthropometric dimensions (Acoustical Society of AmericaHonolulu, 2016), p. 050007. https://doi.org/10.1121/2.0000562. | es_ES |
dc.description.references | X. Zhong, B. Xie, An individualized interaural time difference model based on spherical harmonic function expansion. Chin. J. Acoust.32(3), 284 (2013). | es_ES |
dc.description.references | X. Zhong, B. Xie, A novel model of interaural time difference based on spatial fourier analysis. Chin. Phys. Lett.24(5), 1313–1316 (2007). https://doi.org/10.1088/0256-307X/24/5/052. | es_ES |
dc.description.references | I. Tashev, in 2014 Information Theory and Applications Workshop (ITA). Hrtf Phase Synthesis Via Sparse Representation of Anthropometric Features (IEEESan Diego, 2014), pp. 1–5. https://doi.org/10.1109/ITA.2014.6804239. | es_ES |
dc.description.references | H. Gamper, D. Johnston, I. J. Tashev, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Interaural time delay personalisation using incomplete head scans (IEEENew Orleans, 2017), pp. 461–465. https://doi.org/10.1109/ICASSP.2017.7952198. | es_ES |
dc.description.references | A. Lindau, J. Estrella, S. Weinzierl, in Proc of the 128th AES Convention. Individualization of dynamic binaural synthesis by real time manipulation of the ITD (Audio Engineering SocietyLondon, 2010). | es_ES |
dc.description.references | J. J. Lopez, P. Gutierrez-Parera, in Audio Engineering Society 142nd Convention. Equipment for fast measurement of Head-Related Transfer Functions (Audio Engineering SocietyBerlin, 2017), p. 335. | es_ES |
dc.description.references | J. J. Lopez, P. Gutierrez-Parera, M. Cobos, Compensating first reflections in non-anechoic head-related transfer function measurements. Appl. Acoust.188:, 108523 (2022). https://doi.org/10.1016/j.apacoust.2021.108523. | es_ES |
dc.description.references | Brüel & Kjær, TYPE 4100 - Brüel & Kjær Sound & Vibration, sound quality Head and Torso Simulator. https://www.bksv.com/en/products/transducers/ear-simulators/head-and-torso/hats-type-4100. Accessed 25 09 2019. | es_ES |
dc.description.references | F. Christensen, G. Martin, P. Minnaar, W. K. Song, B. Pedersen, M. Lydolf, in Audio Engineering Society 118th Convention, vol 1. A listening test system for automotive audio - Part 1: System description (Barcelona, 2005), pp. 163–172. | es_ES |
dc.description.references | Georg Neumann GmbH, Neumann KU100 Dummy head. https://en-de.neumann.com/ku-100. Accessed 25 09 2019. | es_ES |
dc.description.references | A. Andreopoulou, D. R. Begault, B. F. G. Katz, Inter-Laboratory Round Robin HRTF Measurement Comparison. IEEE J Sel Top Signal Proc.9(5), 895–906 (2015). https://doi.org/10.1109/JSTSP.2015.2400417. | es_ES |
dc.description.references | M. Karjalainen, T. Paatero, in IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics. Frequency-dependent signal windowing (IEEENew Paltz, 2001), pp. 35–38. https://doi.org/10.1109/aspaa.2001.969536. | es_ES |
dc.description.references | F. Denk, B. Kollmeier, S. D. Ewert, Removing reflections in semianechoic impulse responses by frequency-dependent truncation. J. Audio Eng. Soc.66(3), 146–153 (2018). https://doi.org/10.17743/jaes.2018.0002. | es_ES |
dc.description.references | S. Fontana, A. Farina, in Audio Engineering Society 120th Convention. A System for Rapid Measurement and Direct Customization of Head Related Impulse Responses (Audio Engineering SocietyParis, 2006). | es_ES |
dc.description.references | J. Gómez Bolaños, V. Pulkki, in Audio Engineering Society 133rd Convention. HRIR database with measured actual source direction data (Audio Engineering SocietyNew York, 2012). | es_ES |
dc.description.references | J. Gómez Bolaños, A. Mäkivirta, V. Pulkki, Automatic Regularization Parameter for Headphone Transfer Function Inversion. J. Audio Eng. Soc.64(10), 752–761 (2016). https://doi.org/10.17743/jaes.2016.0030. | es_ES |
dc.description.references | Mathworks, MATLAB Camera calibrator App. https://es.mathworks.com/help/vision/ref/cameracalibrator-app.html. Accessed 21 Dec 2021. | es_ES |
dc.description.references | K. Watanabe, K. Ozawa, Y. Iwaya, Y. Suzuki, K. Aso, Estimation of interaural level difference based on anthropometry and its effect on sound localization. J. Acoust. Soc. Am.122(5), 2832–2841 (2007). https://doi.org/10.1121/1.2785039. | es_ES |
dc.description.references | M. Zhang, R. A. Kennedy, T. D. Abhayapala, W. Zhang, in 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, HSCMA’11. Statistical method to identify key anthropometric parameters in hrtf individualization (IEEE, 2011), pp. 213–218. https://doi.org/10.1109/HSCMA.2011.5942401. | es_ES |
dc.description.references | B. F. G. Katz, M. Noisternig, A comparative study of interaural time delay estimation methods. J. Acoust. Soc. Am.135(6), 3530–3540 (2014). https://doi.org/10.1121/1.4875714. | es_ES |
dc.description.references | A. Andreopoulou, B. F. G. Katz, Identification of perceptually relevant methods of inter-aural time difference estimation. J. Acoust. Soc. Am.142(2), 588–598 (2017). https://doi.org/10.1121/1.4996457. | es_ES |
dc.description.references | T. Nishino, N. Inoue, K. Takeda, F. Itakura, Estimation of HRTFs on the horizontal plane using physical features. Appl. Acoust.68(8), 897–908 (2007). https://doi.org/10.1016/j.apacoust.2006.12.010. | es_ES |
dc.description.references | M. Romanov, P. Berghold, D. Rudrich, M. Zaunschirm, M. Frank, F. Zotter, in Audio Engineering Society 142nd Convention. Implementation and Evaluation of a Low-cost Head-tracker for Binaural Synthesis (Audio Engineering SocietyBerlin, 2017), pp. 1–6. | es_ES |
dc.description.references | Z. Ben-Hur, D. L. Alon, P. W. Robinson, R. Mehra, in Proceedings of the AES International Conference on Audio for Virtual and Augmented Reality, vol August. Localization of virtual sounds in dynamic listening using sparse HRTFs (Audio Engineering SocietyNew York, 2020). | es_ES |
dc.description.references | S. Werner, G. Götz, F. Klein, in Audio Engineering Society 142nd International Convention. Influence of head tracking on the externalization of auditory events at divergence between synthesized and listening room using a binaural headphone system (Audio Engineering SocietyBerlin, 2017). | es_ES |
dc.description.references | J. Oberem, J. G. Richter, D. Setzer, J. Seibold, I. Koch, J. Fels, Experiments on localization accuracy with non-individual and individual HRTFs comparing static and dynamic reproduction methods. bioRxiv (2020). https://doi.org/10.1101/2020.03.31.011650. | es_ES |
dc.description.references | B. Rosner, Percentage points for a generalized esd many-outlier procedure. Technometrics. 25(2), 165–172 (1983). https://doi.org/10.1080/00401706.1983.10487848. | es_ES |
dc.description.references | A. Andreopoulou, B. F. G. Katz, Subjective HRTF evaluations for obtaining global similarity metrics of assessors and assessees. J. Multimodal User Interfaces. 10(3), 259–271 (2016). https://doi.org/10.1007/s12193-016-0214-y. | es_ES |
dc.description.references | C. Armstrong, L. Thresh, D. Murphy, G. Kearney, A Perceptual Evaluation of Individual and Non-Individual HRTFs: A Case Study of the SADIE II Database. Appl. Sci.8(11), 2029 (2018). https://doi.org/10.3390/app8112029. | es_ES |
dc.description.references | A. Andreopoulou, B. F. G. Katz, in Audio Engineering Society 140th Convention. Investigation on Subjective HRTF Rating Repeatability (Audio Engineering SocietyParis, 2016). | es_ES |
dc.description.references | B. G. Shinn-Cunningham, N. I. Durlach, R. M. Held, Adapting to supernormal auditory localization cues. I. Bias and resolution. J. Acoust. Soc. Am.103(6), 3656–3666 (1998). https://doi.org/10.1121/1.423088. | es_ES |
dc.description.references | L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis (Wiley, 1990). https://doi.org/10.1002/9780470316801. | es_ES |
dc.description.references | H. Hu, L. Zhou, J. Zhang, H. Ma, Z. Wu, in 2006 International Conference on Computational Intelligence and Security, ICCIAS 2006, vol 2. Head related transfer function personalization based on multiple regression analysis (IEEE, 2007), pp. 1829–1832. https://doi.org/10.1109/ICCIAS.2006.295380. | es_ES |
dc.description.references | W. W. Hugeng, D. Gunawan, Improved method for individualization of Head-Related Transfer Functions on horizontal plane using reduced number of anthropometric measurements. J. Telecommun.2(2), 31–41 (2010). http://arxiv.org/abs/1005.5137. | es_ES |
dc.description.references | C. Mendonça, G. Campos, P. Dias, J. A. Santos, Learning Auditory Space: Generalization and Long-Term Effects. PLoS ONE. 8(10) (2013). https://doi.org/10.1371/journal.pone.0077900. | es_ES |
upv.costeAPC | 1694 | es_ES |