Mostrar el registro sencillo del ítem
dc.contributor.author | Arroyo Jordá, Milagros | es_ES |
dc.contributor.author | Arroyo Jordá, Paz | es_ES |
dc.contributor.author | Dark, Rex | es_ES |
dc.contributor.author | Feldman, Arnold D. | es_ES |
dc.contributor.author | Pérez-Ramos, María Dolores | es_ES |
dc.date.accessioned | 2023-11-15T19:01:48Z | |
dc.date.available | 2023-11-15T19:01:48Z | |
dc.date.issued | 2022 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199850 | |
dc.description.abstract | [EN] Classical results from the theory of finite soluble groups state that Carter subgroups, i.e. self-normalizing nilpotent subgroups, coincide with nilpotent projectors and with nilpotent covering subgroups, and they form a non-empty conjugacy class of subgroups, in soluble groups. This paper presents an extension of these facts to pi-separable groups, for sets of primes pi, by proving the existence of a conjugacy class of subgroups in pi-separable groups, which specialize to Carter subgroups within the universe of soluble groups. The approach runs parallel to the extension of Hall theory from soluble to pi-separable groups by C. unihin, regarding existence and properties of Hall subgroups. | es_ES |
dc.description.sponsorship | The authors want to thank Peter Hauck for helpful conversations. This research has been supported by Proyectos PROMETEO/2017/057 from the Generalitat Valenciana (Valencian Community, Spain), and PGC2018-096872-B-I00 from the Ministerio de Ciencia, Innovacion y Universidades, Spain, and FEDER, European Union. The fourth author acknowledges with thanks the financial support of the Universitat de Valencia as research visitor (Programa Propi d'Ajudes a la Investigacio de la Universitat de Valencia, Subprograma Atraccio de Talent de VLC-Campus, Estades d'investigadors convidats (2019)). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Finite soluble groups | es_ES |
dc.subject | Pi(¿)-separable groups | es_ES |
dc.subject | Carter subgroups | es_ES |
dc.subject | Hall systems | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Carter and Gaschutz theories beyond soluble groups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-022-01215-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096872-B-I00/ES/GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F057/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PGC2018-096872-B-I00//GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Arroyo Jordá, M.; Arroyo Jordá, P.; Dark, R.; Feldman, AD.; Pérez-Ramos, MD. (2022). Carter and Gaschutz theories beyond soluble groups. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 116(2):1-13. https://doi.org/10.1007/s13398-022-01215-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-022-01215-7 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 116 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\462624 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Arad, Z., Fisman, E.: On finite factorizable groups. J. Algebra 86, 522–548 (1984) | es_ES |
dc.description.references | Arroyo-Jordá, M., Pérez-Ramos, M.D.: On the lattice of $${\mathfrak{F}}$$-Dnormal subgroups in finite soluble groups. J. Algebra 242, 198–212 (2001) | es_ES |
dc.description.references | Arroyo-Jordá, M., Pérez-Ramos, M.D.: Fitting classes and lattice formations I. J. Aust. Math. Soc. 76, 93–108 (2004) | es_ES |
dc.description.references | Arroyo-Jordá, M., Arroyo-Jordá, P., Dark, R., Feldman, A.D., Pérez-Ramos, M.D.: Injectors in $$\pi $$-separable groups. Mediterranean J. Math. (to appear) | es_ES |
dc.description.references | Ballester-Bolinches, A., Ezquerro, L.M.: Classes of finite groups. In: Mathematics and Its Applications, vol. 584. Springer, New York (2006) | es_ES |
dc.description.references | Čunihin, S.A.: On theorems of Sylow’s type. Doklady Akad. Nauk. SSSR 66, 165–168 (1949) | es_ES |
dc.description.references | Carter, R.W.: Nilpotent self-normalizing subgroups of soluble groups. Math. Z. 75, 136–139 (1961) | es_ES |
dc.description.references | Carter, R.W., Hawkes, T.O.: The $${\mathfrak{F}}$$-normalizers of a finite soluble group. J. Algebra 5, 175–201 (1967) | es_ES |
dc.description.references | Doerk, K., Hawkes, T.: Finite soluble groups. De Gruyter (1992) | es_ES |
dc.description.references | Du, Z.: Hall subgroups and $$\pi $$-separable groups. J. Algebra 195, 501–509 (1997) | es_ES |
dc.description.references | Förster, P.: Projektive Klassen endlicher Gruppen I. Schunck- und Gaschützklassen. Math. Z. 186, 149–178 (1984) | es_ES |
dc.description.references | Gaschütz, W.: Zur Theorie der endlichen auflösbaren Gruppen. Math. Z. 80, 300–305 (1963) | es_ES |
dc.description.references | Gilotti, A.L.: $$D_\pi $$-property and normal subgroups. Ann. Mat. Pura Appl. 148, 227–235 (1987) | es_ES |
dc.description.references | Gorenstein, D.: Finite groups. Chelsea Publishing Company (1980) | es_ES |
dc.description.references | Hall, P.: A note on soluble groups. J. Lond. Math. Soc. 3, 98–105 (1928) | es_ES |
dc.description.references | Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12, 188–200 (1937) | es_ES |
dc.description.references | Hawkes, T.O.: On formation subgroups of a finite soluble group. J. Lond. Math. Soc. 44, 243–250 (1969) | es_ES |
dc.description.references | Revin, D.O., Vdovin, E.P.: Hall subgroups in finite groups. In: Ischia Group Theory 2004, Contemp. Math. 402, (Amer. Math. Soc., Providence, RI, 2006), pp. 229–263 | es_ES |
dc.description.references | Vdovin, E.P.: Carter subgroups of finite almost simple groups. Algebra Logika 46(2), 157–216 (2007) | es_ES |