- -

A Constraint-based Approach to Learn Temporal Features on Action Models from Multiple Plans

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Constraint-based Approach to Learn Temporal Features on Action Models from Multiple Plans

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido, Antonio es_ES
dc.date.accessioned 2023-11-24T19:00:22Z
dc.date.available 2023-11-24T19:00:22Z
dc.date.issued 2022-04 es_ES
dc.identifier.issn 1383-7133 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200190
dc.description.abstract [EN] Learning in AI planning tries to recognize past conducts to predict features that help improve action models. We propose a constraint programming approach for learning the temporal features, i.e., the distribution of conditions/effects and durations, of actions in an expressive temporal planning model with overlapping actions, which makes it suitable for knowledge-based multi-agent systems. We automatically build a purely declarative formulation that models time-stamps for durative actions, causal link relationships, threats and effect interferences from an arbitrary number of input plans: from just a unique single trace to many. We accommodate different degrees of input knowledge and support a different range of expressiveness, subsuming the PDDL2.1 temporal semantics. The formulation is simple but effective, and is not only valid for learning, but also for plan validation, as shown in its evaluation that returns high precision and accuracy values. es_ES
dc.description.sponsorship This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Constraints es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Learning durative action models es_ES
dc.subject Temporal planning es_ES
dc.subject Partial observability es_ES
dc.subject Constraint programming es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Constraint-based Approach to Learn Temporal Features on Action Models from Multiple Plans es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10601-022-09330-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Garrido, A. (2022). A Constraint-based Approach to Learn Temporal Features on Action Models from Multiple Plans. Constraints. 27(1-2):134-160. https://doi.org/10.1007/s10601-022-09330-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10601-022-09330-3 es_ES
dc.description.upvformatpinicio 134 es_ES
dc.description.upvformatpfin 160 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\462092 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Geffner, H., & Bonet, B. (2013). A concise introduction to models and methods for automated planning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 8(1), 1–141. es_ES
dc.description.references Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice. Elsevier. es_ES
dc.description.references Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research, 20, 61–124. es_ES
dc.description.references Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic plan validation, continuous effects and mixed initiative planning using PDDL. In Proc. of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-04) (pp. 294–301). es_ES
dc.description.references Kambhampati, S. (2007). Model-lite planning for the web age masses: The challenges of planning with incomplete and evolving domain models. In Proc. of the National Conference on Artificial Intelligence (AAAI-07), (Vol. 22(2) pp. 1601–1604). es_ES
dc.description.references Zhuo, H.H., Yang, Q., Hu, D.H., & Li, L. (2010). Learning complex action models with quantifiers and logical implications. Artificial Intelligence, 174(18), 1540–1569. es_ES
dc.description.references Cushing, W., Kambhampati, S., Weld, D.S., & et al (2007). When is temporal planning really temporal?. In Proc. of the International Joint Conference on Artificial Intelligence (pp. 1852–1859). Morgan Kaufmann Publishers Inc. es_ES
dc.description.references Coles, A., Fox, M., Halsey, K., Long, D., & Smith, A. (2009). Managing concurrency in temporal planning using planner-scheduler interaction. Artificial Intelligence, 173(1), 1–44. es_ES
dc.description.references Rintanen, J. (2015). Models of action concurrency in temporal planning. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI-2015), (Vol. 99 pp. 1659–1665). es_ES
dc.description.references Baker, C.L., Saxe, R., & Tenenbaum, J.B. (2009). Action understanding as inverse planning. Cognition, 113, 329–349. es_ES
dc.description.references Jiménez, S., De la Rosa, T., Fernández, S., Fernández, F., & Borrajo, D. (2012). A review of machine learning for automated planning. The Knowledge Engineering Review, 27(4), 433–467. es_ES
dc.description.references Appiah, A.Y., Zhang, X., Ayawli, B.B.K., & Kyeremeh, F. (2019). Long short-term memory networks based automatic feature extraction for photovoltaic array fault diagnosis. IEEE Access, 7, 30089–30101. es_ES
dc.description.references Jialin Pan, S., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. es_ES
dc.description.references Kou, G., Yue, J., Ma, Y., Wang, Q., & Zhang, Z. (2019). SAR image invariant feature extraction by anisotropic diffusion and multi-gray level simplified PCNN. IEEE Access, 7, 47135–47142. es_ES
dc.description.references Lauretti, C., Cordella, F., Ciancio, A.L., Trigili, E., Catalan, J.M., Badesa, F.J., Crea, S., Pagliara, S.M., Sterzi, S., Vitiello, N., Garcia Aracil, N., & Zollo, L. (2018). Learning by demonstration for motion planning of upper-limb exoskeletons. Frontiers in Neurorobotics, 12, 1–5. es_ES
dc.description.references Liu, L., Wang, S., Hu, B., Qiong, Q., & Rosenblum, D.S. (2018). Learning structures of interval-based bayesian networks in probabilistic generative model for human complex activity recognition. Pattern Recognition, 81, 545–561. es_ES
dc.description.references Xu, Y., Tsujii, J., & Chang, E.I.-C. (2012). Named entity recognition of follow-up and time information in 20000 radiology reports. Journal of the American Medical Informatics Association, 19(5), 792–799. es_ES
dc.description.references Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. Deep learning based text classification: a comprehensive review. https://arxiv.org/pdf/2004.03705.pdf. es_ES
dc.description.references Zhao, W., Peng, H., Eger, S., Cambria, E., & Yang, M. (2019). Towards scalable and reliable capsule networks for challenging NLP applications. In Proc. of the Annual Meeting of the Association for Computational Linguistics (pp. 1549–1559). es_ES
dc.description.references Zhong, X., Cambria, E., & Hussain, A. (2020). Extracting time expressions and named entities with constituent-based tagging schemes. Cognitive Computation, 12, 844–862. es_ES
dc.description.references Bonet, B., & Geffner, H. (2020). Learning first-order symbolic representations for planning from the structure of the state space. In Proc. of the European Conference on Artificial Intelligence (ECAI-2020) (pp. 2322–2329). IOS Press. es_ES
dc.description.references Kucera, J., & Barták, R. (2018). LOUGA: learning planning operators using genetic algorithms. In Proc. of the Pacific Rim Knowledge Acquisition Workshop (PKAW-18) (pp. 124–138). es_ES
dc.description.references Mourão, K., Zettlemoyer, L.S., Petrick, R.P.A., & Steedman, M. (2012). Learning STRIPS operators from noisy and incomplete observations. In Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI-12) (pp. 614–623). es_ES
dc.description.references Yang, Q., Wu, K., & Jiang, Y. (2007). Learning action models from plan examples using weighted MAX-SAT. Artificial Intelligence, 171(2-3), 107–143. es_ES
dc.description.references Zhuo, H.H., & Kambhampati, S. (2013). Action-model acquisition from noisy plan traces. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI-13) (pp. 2444–2450). es_ES
dc.description.references Arora, A., Fiorino, H., Pellier, D., Métivier, M., & Pesty, S. (2018). A review of learning planning action models. The Knowledge Engineering Review, 33. es_ES
dc.description.references Aineto, D., Jiménez, S., & Onaindia, E. (2019). Learning action models with minimal observability. Artificial Intelligence, 275, 104–137. es_ES
dc.description.references Amir, E., & Chang, A. (2008). Learning partially observable deterministic action models. Journal of Artificial Intelligence Research, 33, 349–402. es_ES
dc.description.references Cresswell, S.N., McCluskey, T.L., & West, M.M. (2013). Acquiring planning domain models using LOCM. The Knowledge Engineering Review, 28(2), 195–213. es_ES
dc.description.references Zhuo, H.H., & Kambhampati, S. (2017). Model-lite planning: case-based vs. model-based approaches. Artificial Intelligence, 246, 1–21. es_ES
dc.description.references Zhuo, H.H., Nguyen, T.A., & Kambhampati, S. (2013). Refining incomplete planning domain models through plan traces. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI-13) (pp. 2451–2458). es_ES
dc.description.references Aineto, D., Jiménez, S., & Onaindia, E. (2018). Learning STRIPS action models with classical planning. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-18) (pp. 399–407). es_ES
dc.description.references Zhuo, H.H., Muñoz-Avila, H., & Yang, Q. (2014). Learning hierarchical task network domains from partially observed plan traces. Artificial Intelligence, 212, 134–157. es_ES
dc.description.references Rodriguez, I., Bonet, B., Romero, J., & Geffner, H. (2021). Learning first-order representations for planning from black box states: New results. In Proc. of the 18th Int. Conference on Principles of Knowledge Representation and Reasoning (pp. 539–548). es_ES
dc.description.references Garrido, A., & Jimenez, S. (2020). Learning temporal action models via constraint programming. In Proc. of the European Conference on Artificial Intelligence (ECAI-2020) (pp. 2362–2369). IOS Press. es_ES
dc.description.references McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. In Proc. 9th Nat. Conference on AI (pp. 634–639). Anaheim, CA. es_ES
dc.description.references Penberthy, J., & Weld, D.S. (1992). UCPOP: a sound, complete, partial-order planner for ADL. In Proc. Int. Conference on Principles of Knowledge Representation and Reasoning (pp. 103–114). Los Altos, CA: Kaufmann. es_ES
dc.description.references Vidal, V., & Geffner, H. (2006). Branching and pruning: an optimal temporal POCL planner based on constraint programming. Artificial Intelligence, 170, 298–335. es_ES
dc.description.references Garrido, A., Arangu, M., & Onaindia, E. (2009). A constraint programming formulation for planning: from plan scheduling to plan generation. Journal of Scheduling, 12(3), 227–256. es_ES
dc.description.references Booth, K.E.C., Minh Do, J., Beck, C., Rieffel, E.G., Venturelli, D., & Frank, J. (2018). Comparing and integrating constraint programming and temporal planning for quantum circuit compilation. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-18) (pp. 366–374). es_ES
dc.description.references Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: an overview. Journal of Artificial Intelligence Research, 24, 519–579. es_ES
dc.description.references Walsh, T. (2000). SAT v CSP. In Proc. of the Int. Conference on Principles and Practice of Constraint Programming (CP-2000) (pp. 441–456). es_ES
dc.description.references Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and temporal action graphs in LPG. Journal of Artificial Intelligence Research, 20, 239–290. es_ES
dc.description.references Jiménez, S., Jonsson, A., & Palacios, H. (2015). Temporal planning with required concurrency using classical planning. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-15). es_ES
dc.description.references Eyerich, P., Mattmüller, R., & Röger, G. (2009). Using the context-enhanced additive heuristic for temporal and numeric planning. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-09). es_ES
dc.description.references Marzal, E., Sebastia, L., & Onaindia, E. (2016). Temporal landmark graphs for solving overconstrained planning problems. Knowledge-Based Systems, 106, 14–25. es_ES
dc.description.references Zhuo, H.H., & Yang, Q. (2014). Action-model acquisition for planning via transfer learning. Artificial Intelligence, 212, 80–103. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem