Mostrar el registro sencillo del ítem
dc.contributor.author | Garrido, Antonio | es_ES |
dc.date.accessioned | 2023-11-24T19:00:22Z | |
dc.date.available | 2023-11-24T19:00:22Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.issn | 1383-7133 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200190 | |
dc.description.abstract | [EN] Learning in AI planning tries to recognize past conducts to predict features that help improve action models. We propose a constraint programming approach for learning the temporal features, i.e., the distribution of conditions/effects and durations, of actions in an expressive temporal planning model with overlapping actions, which makes it suitable for knowledge-based multi-agent systems. We automatically build a purely declarative formulation that models time-stamps for durative actions, causal link relationships, threats and effect interferences from an arbitrary number of input plans: from just a unique single trace to many. We accommodate different degrees of input knowledge and support a different range of expressiveness, subsuming the PDDL2.1 temporal semantics. The formulation is simple but effective, and is not only valid for learning, but also for plan validation, as shown in its evaluation that returns high precision and accuracy values. | es_ES |
dc.description.sponsorship | This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Constraints | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Learning durative action models | es_ES |
dc.subject | Temporal planning | es_ES |
dc.subject | Partial observability | es_ES |
dc.subject | Constraint programming | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Constraint-based Approach to Learn Temporal Features on Action Models from Multiple Plans | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10601-022-09330-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Garrido, A. (2022). A Constraint-based Approach to Learn Temporal Features on Action Models from Multiple Plans. Constraints. 27(1-2):134-160. https://doi.org/10.1007/s10601-022-09330-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10601-022-09330-3 | es_ES |
dc.description.upvformatpinicio | 134 | es_ES |
dc.description.upvformatpfin | 160 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.pasarela | S\462092 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Geffner, H., & Bonet, B. (2013). A concise introduction to models and methods for automated planning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 8(1), 1–141. | es_ES |
dc.description.references | Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice. Elsevier. | es_ES |
dc.description.references | Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research, 20, 61–124. | es_ES |
dc.description.references | Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic plan validation, continuous effects and mixed initiative planning using PDDL. In Proc. of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-04) (pp. 294–301). | es_ES |
dc.description.references | Kambhampati, S. (2007). Model-lite planning for the web age masses: The challenges of planning with incomplete and evolving domain models. In Proc. of the National Conference on Artificial Intelligence (AAAI-07), (Vol. 22(2) pp. 1601–1604). | es_ES |
dc.description.references | Zhuo, H.H., Yang, Q., Hu, D.H., & Li, L. (2010). Learning complex action models with quantifiers and logical implications. Artificial Intelligence, 174(18), 1540–1569. | es_ES |
dc.description.references | Cushing, W., Kambhampati, S., Weld, D.S., & et al (2007). When is temporal planning really temporal?. In Proc. of the International Joint Conference on Artificial Intelligence (pp. 1852–1859). Morgan Kaufmann Publishers Inc. | es_ES |
dc.description.references | Coles, A., Fox, M., Halsey, K., Long, D., & Smith, A. (2009). Managing concurrency in temporal planning using planner-scheduler interaction. Artificial Intelligence, 173(1), 1–44. | es_ES |
dc.description.references | Rintanen, J. (2015). Models of action concurrency in temporal planning. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI-2015), (Vol. 99 pp. 1659–1665). | es_ES |
dc.description.references | Baker, C.L., Saxe, R., & Tenenbaum, J.B. (2009). Action understanding as inverse planning. Cognition, 113, 329–349. | es_ES |
dc.description.references | Jiménez, S., De la Rosa, T., Fernández, S., Fernández, F., & Borrajo, D. (2012). A review of machine learning for automated planning. The Knowledge Engineering Review, 27(4), 433–467. | es_ES |
dc.description.references | Appiah, A.Y., Zhang, X., Ayawli, B.B.K., & Kyeremeh, F. (2019). Long short-term memory networks based automatic feature extraction for photovoltaic array fault diagnosis. IEEE Access, 7, 30089–30101. | es_ES |
dc.description.references | Jialin Pan, S., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. | es_ES |
dc.description.references | Kou, G., Yue, J., Ma, Y., Wang, Q., & Zhang, Z. (2019). SAR image invariant feature extraction by anisotropic diffusion and multi-gray level simplified PCNN. IEEE Access, 7, 47135–47142. | es_ES |
dc.description.references | Lauretti, C., Cordella, F., Ciancio, A.L., Trigili, E., Catalan, J.M., Badesa, F.J., Crea, S., Pagliara, S.M., Sterzi, S., Vitiello, N., Garcia Aracil, N., & Zollo, L. (2018). Learning by demonstration for motion planning of upper-limb exoskeletons. Frontiers in Neurorobotics, 12, 1–5. | es_ES |
dc.description.references | Liu, L., Wang, S., Hu, B., Qiong, Q., & Rosenblum, D.S. (2018). Learning structures of interval-based bayesian networks in probabilistic generative model for human complex activity recognition. Pattern Recognition, 81, 545–561. | es_ES |
dc.description.references | Xu, Y., Tsujii, J., & Chang, E.I.-C. (2012). Named entity recognition of follow-up and time information in 20000 radiology reports. Journal of the American Medical Informatics Association, 19(5), 792–799. | es_ES |
dc.description.references | Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. Deep learning based text classification: a comprehensive review. https://arxiv.org/pdf/2004.03705.pdf. | es_ES |
dc.description.references | Zhao, W., Peng, H., Eger, S., Cambria, E., & Yang, M. (2019). Towards scalable and reliable capsule networks for challenging NLP applications. In Proc. of the Annual Meeting of the Association for Computational Linguistics (pp. 1549–1559). | es_ES |
dc.description.references | Zhong, X., Cambria, E., & Hussain, A. (2020). Extracting time expressions and named entities with constituent-based tagging schemes. Cognitive Computation, 12, 844–862. | es_ES |
dc.description.references | Bonet, B., & Geffner, H. (2020). Learning first-order symbolic representations for planning from the structure of the state space. In Proc. of the European Conference on Artificial Intelligence (ECAI-2020) (pp. 2322–2329). IOS Press. | es_ES |
dc.description.references | Kucera, J., & Barták, R. (2018). LOUGA: learning planning operators using genetic algorithms. In Proc. of the Pacific Rim Knowledge Acquisition Workshop (PKAW-18) (pp. 124–138). | es_ES |
dc.description.references | Mourão, K., Zettlemoyer, L.S., Petrick, R.P.A., & Steedman, M. (2012). Learning STRIPS operators from noisy and incomplete observations. In Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI-12) (pp. 614–623). | es_ES |
dc.description.references | Yang, Q., Wu, K., & Jiang, Y. (2007). Learning action models from plan examples using weighted MAX-SAT. Artificial Intelligence, 171(2-3), 107–143. | es_ES |
dc.description.references | Zhuo, H.H., & Kambhampati, S. (2013). Action-model acquisition from noisy plan traces. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI-13) (pp. 2444–2450). | es_ES |
dc.description.references | Arora, A., Fiorino, H., Pellier, D., Métivier, M., & Pesty, S. (2018). A review of learning planning action models. The Knowledge Engineering Review, 33. | es_ES |
dc.description.references | Aineto, D., Jiménez, S., & Onaindia, E. (2019). Learning action models with minimal observability. Artificial Intelligence, 275, 104–137. | es_ES |
dc.description.references | Amir, E., & Chang, A. (2008). Learning partially observable deterministic action models. Journal of Artificial Intelligence Research, 33, 349–402. | es_ES |
dc.description.references | Cresswell, S.N., McCluskey, T.L., & West, M.M. (2013). Acquiring planning domain models using LOCM. The Knowledge Engineering Review, 28(2), 195–213. | es_ES |
dc.description.references | Zhuo, H.H., & Kambhampati, S. (2017). Model-lite planning: case-based vs. model-based approaches. Artificial Intelligence, 246, 1–21. | es_ES |
dc.description.references | Zhuo, H.H., Nguyen, T.A., & Kambhampati, S. (2013). Refining incomplete planning domain models through plan traces. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI-13) (pp. 2451–2458). | es_ES |
dc.description.references | Aineto, D., Jiménez, S., & Onaindia, E. (2018). Learning STRIPS action models with classical planning. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-18) (pp. 399–407). | es_ES |
dc.description.references | Zhuo, H.H., Muñoz-Avila, H., & Yang, Q. (2014). Learning hierarchical task network domains from partially observed plan traces. Artificial Intelligence, 212, 134–157. | es_ES |
dc.description.references | Rodriguez, I., Bonet, B., Romero, J., & Geffner, H. (2021). Learning first-order representations for planning from black box states: New results. In Proc. of the 18th Int. Conference on Principles of Knowledge Representation and Reasoning (pp. 539–548). | es_ES |
dc.description.references | Garrido, A., & Jimenez, S. (2020). Learning temporal action models via constraint programming. In Proc. of the European Conference on Artificial Intelligence (ECAI-2020) (pp. 2362–2369). IOS Press. | es_ES |
dc.description.references | McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. In Proc. 9th Nat. Conference on AI (pp. 634–639). Anaheim, CA. | es_ES |
dc.description.references | Penberthy, J., & Weld, D.S. (1992). UCPOP: a sound, complete, partial-order planner for ADL. In Proc. Int. Conference on Principles of Knowledge Representation and Reasoning (pp. 103–114). Los Altos, CA: Kaufmann. | es_ES |
dc.description.references | Vidal, V., & Geffner, H. (2006). Branching and pruning: an optimal temporal POCL planner based on constraint programming. Artificial Intelligence, 170, 298–335. | es_ES |
dc.description.references | Garrido, A., Arangu, M., & Onaindia, E. (2009). A constraint programming formulation for planning: from plan scheduling to plan generation. Journal of Scheduling, 12(3), 227–256. | es_ES |
dc.description.references | Booth, K.E.C., Minh Do, J., Beck, C., Rieffel, E.G., Venturelli, D., & Frank, J. (2018). Comparing and integrating constraint programming and temporal planning for quantum circuit compilation. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-18) (pp. 366–374). | es_ES |
dc.description.references | Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: an overview. Journal of Artificial Intelligence Research, 24, 519–579. | es_ES |
dc.description.references | Walsh, T. (2000). SAT v CSP. In Proc. of the Int. Conference on Principles and Practice of Constraint Programming (CP-2000) (pp. 441–456). | es_ES |
dc.description.references | Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and temporal action graphs in LPG. Journal of Artificial Intelligence Research, 20, 239–290. | es_ES |
dc.description.references | Jiménez, S., Jonsson, A., & Palacios, H. (2015). Temporal planning with required concurrency using classical planning. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-15). | es_ES |
dc.description.references | Eyerich, P., Mattmüller, R., & Röger, G. (2009). Using the context-enhanced additive heuristic for temporal and numeric planning. In Proc. of the International Conference on Automated Planning and Scheduling (ICAPS-09). | es_ES |
dc.description.references | Marzal, E., Sebastia, L., & Onaindia, E. (2016). Temporal landmark graphs for solving overconstrained planning problems. Knowledge-Based Systems, 106, 14–25. | es_ES |
dc.description.references | Zhuo, H.H., & Yang, Q. (2014). Action-model acquisition for planning via transfer learning. Artificial Intelligence, 212, 80–103. | es_ES |